

Measurement of Lepton-Lepton Electroweak Reactions (MOLLER) Project

System Requirements Document for MOLLER Spectrometer (WBS 1.03) of the MOLLER EXPERIMENT

Page intentionally left blank

System Requirements Document for Spectrometer (WBS 1.03) of the MOLLER EXPERIMENT

Mike Bevins, CAM (Acting), Spectrometer	Date
Juliette Mammei, MOLLER Physics Lead	Date
David Kashy, MOLLER Technical Lead	Date
Kent Paschke, MOLLER Scientific Coordinator	Date
Robin Wines, Moller Project Engineer	Date
Jim Fast, MOLLER Project Manager	Date

Revision No.	Pages Affected and Description	Effective Date
Revision 0	Initial Release	TBD
		Nº
		$\langle \cdot \rangle$
	e e e e e e e e e e e e e e e e e e e	
	AV.	

1. CHANGE LOG

2. ACRONYM LIST

- JLab Thomas Jefferson National Accelerator Facility (Jefferson Lab)
- MOLLER Measurement of a Lepton-Lepton Electroweak Reaction
- US Upstream (referring to the upstream magnet, supports, power supplies, enclosure, etc.)
- DS Downstream (referring to the downstream magnet, supports, power supplies, enclosure, etc.)

Table of Contents

1.	Change Log	4
2.	Acronym List	5
1	Scope	7
1	.1 DOCUMENT OVERVIEW	7
1	.2 CONTROL AND REVISION	7
1	.3 TERMINOLOGY	7
1	.4 DEFINITION OF COORDINATE AXES	7
1	.5 INCOMPLETE AND TENTATIVE REQUIREMENTS	8
2	SYSTEM Function, Configuration and Interfaces	8
2	.1 SYSTEM FUNCTION	8
2	2 SYSTEM BASIC CONFIGURATION	8
2	.3 SYSTEM INTERFACES	8
3	Design Requirements	9
3	.1 MATERIALS	9
3	.2 MAGNETS	9
3	.3 MAGNET ENCLOSURES	11
3	.4 COLLIMATORS / BLOCKERS / SHIELD ELEMENTS	11
3	.5 BEAM PIPE / WINDOWS / BELLOWS	13
3	.6 FIELD MEASUREMENT	14
3	.7 INSTRUMENTATION	14
4	APPLICABLE DOCUMENTS	14
1. and	PMAG0000-0100-A0007 MOLLER - Upstream and Downstream Coil Specificat Requirements	ion 14

1 SCOPE

The MOLLER Spectrometer Systems Requirements Document (SRD) provides the technical performance requirements as pertains to the toroidal magnets, collimators, collars, lintels and beampipes for MOLLER. This document translates physics requirements into engineering requirements for the spectrometer.

1.1 DOCUMENT OVERVIEW

The remainder of Section 1 provides information about review and approval of this document as well as terminology used. Section 2 provides a high-level functional overview of the system. Section 3 provides the specific design requirements.

1.2 CONTROL AND REVISION

This document and any revisions to it shall be reviewed by the relevant MOLLER CAM, MOLLER Project Engineer and MOLLER Scientific Coordinator and approved by the MOLLER Project Manager.

1.3 TERMINOLOGY

The MOLLER experiment will operate in Hall A at Jefferson Lab. The hall is round with the beamline intersecting the center of the hall about 10 feet above the floor. The hall is usually configured with a pair of magnetic spectrometers (HRS) that rotate about a pivot at the center of the hall, where the target chamber is usually located. The Hall is shown in Figure 1 where the beamline can be seen entering the hall from the right side below the elevated utility platform, the target chamber can be seen at the center of the hall at the pivot, and the two HRS spectrometers can be seen, with HRS-left in the far forward direction and HRS-right about 60-degrees from the beam axis. The beam exits the hall into the beam dump on the left behind HRS-left in this image.

Figure 1: Jefferson Lab Hall A as recently configured. Beam comes from the right. The two spectrometer arms will be moved out of the way during MOLLER installation and running.

1.4 DEFINITION OF COORDINATE AXES

Within this document, the coordinate axes are defined with +z pointing downstream, +x to beam left and +y is vertically upward. The center of the coordinate axes is the center of the hall. The

azimuthal angle, φ , is defined as equal to zero at the positive x axis and increasing going from the +x toward +y axis (clockwise, looking downstream).

1.5 INCOMPLETE AND TENTATIVE REQUIREMENTS

Within this document, the term "TBD" (to be determined) indicates that additional effort (analysis, trade-off studies, etc.) are required to define the particular requirement. The term "TBR" (to be revised) indicates that the value given is subject to change.

2 SYSTEM FUNCTION, CONFIGURATION AND INTERFACES

2.1 SYSTEM FUNCTION

The spectrometer systems provide the magnetic focusing, collimation and vacuum environment to separate and transport the signal, background and un-scattered beam to their respective destinations. The signal electrons are focused to ring 5 of the main detectors while the ep background is focused to ring 2. Radiative tails from these processes populate the remaining main detector rings. The un-scattered beam must be transported with minimal loss to the beam dump. Low energy electrons are bent outward and are a source of background that must be managed by stopping them in various types of absorbers which include collars, lintels, collimators and concrete shielding (shielding is in a separate WBS).

2.2 SYSTEM BASIC CONFIGURATION

The spectrometer system includes the vacuum pipes that extend from the vacuum window at the downstream end of the target chamber to the beam dump tunnel. All hardware in the beam dump tunnel remains as-is and the spectrometer vacuum pipe attaches to this; the vacuum is common. The two 7-fold toroidal magnets (upstream and downstream) provide the separation and focusing of the signal and background scattered electrons at the main detector plane. A series of collimators define the detector acceptance and sculpt the background charged particle and photon envelopes as they progress downstream. Sitting just upstream of the toroids are a movable blocker and sieve collimator used to study the spectrometer acceptance during dedicated counting mode (low current) runs.

2.3 SYSTEM INTERFACES

The Spectrometer system interfaces are captured in three Interface Control Documents (ICD):

- ICD0203-Target to Spectrometer
- ICD0304- Spectrometer to Integrating Detectors
- ICD0305- Spectrometer to Tracking Detectors
- ICD0306-Spectrometer to Infrastructure

Installation, including alignment accuracies required, are covered in the System Requirements Document (SRD) for WBS 1.08, *MOLLER-INSTALLATION-SRD*. This document defines the machining tolerances and the recommended corresponding relative positioning tolerances internal to the spectrometer system. The installation SRD should take precedence if there is a discrepancy in alignment tolerances.

3 DESIGN REQUIREMENTS

This section states general system requirements necessary to fulfill the system function statements. It also links to general constraints and requirements identified in the *MOLLER Functional Requirements* which are pertinent to the engineering of this system, where these are not included below.

3.1 MATERIALS

Materials inside the vacuum systems are documented in PMAG0000-0100-S0022.

	Item	Value	Comments
1	Generally prohibited materials	Steel (stainless, ferromagnetic), elastomers, glues, materials that can be activated with long half-life should be avoided where they receive doses that will activate them	The collaboration has a ferrous materials group and also does simulations on radiation dose to determine acceptable materials
2	Generally allowed materials	Copper, aluminum, epoxy and cyanate ester resins, carbon fiber, glass fiber, tungsten, brass, bronze, titanium, Inconel 625, glass/quartz, silicon-bronze, peroxide-cured EPDM O-ring seals that are suitable for use in low radiation areas (Viton is less radiation tolerant so it needs additional scrutiny)	PMAG0000-0100-S0022 - MOLLER Materials List (Inside Enclosure (selected materials within the enclosure)

3.2 MAGNETS

Reference should be made to '*PMAG0000-0100-A0007 MOLLER - Upstream and Downstream Coil Specification and Requirements*' for the engineering requirements for the upstream and downstream toroid coils and magnets.

Power supply specification is PMAG0000-0100-S0014.

	Item	Value	Comments
1	Magnetic field temporal stability for the complete magnet.	PS variation over a 24 hour period should be within ± 500 ppm at the nominal operating current The maximum variation of coil temperature from nominal should be no greater than ± 3°C over a 24 hour period	Only real concern is helicity correlated fluctuations. <i>[J. Mammei]</i>

		Should be able to operate at the currents between 90% and 110 Ideally, using the operating current stability (RMS over 24 hr) at the no must satisfy the stability values list load values provided in Table 1. Table 1: Nominal power s Table 1: Nominal power s Table 1: Nominal power s Tuber 1: Vortice 1075 Tuber 1: US torus 1: Table 1: Nominal power s Tuber 1: US torus 1075 Tuber 1: US torus 1: Tuber 1:	e same temperature for 0% of the operating current tap, the power supplies will provide 100 ppm minal operating current, but at a minimum ed in Table 1 when operated with the nominal supply operating characteristics. Ut current Normal Operating Low R vbetter than Voltage Henries 00 77.5 0.631 0.059 1000 40 0.153 0.015 1500 57 0.348 0.013 1500 57 0.348 0.013 1500 57 0.348 0.013 1500 57 0.348 0.013 1500 57 0.348 0.013	CE.
2	Expected beam power deposition per coil for each magnet (with symmetric /asymmetric map at 70 µA)	UPSTREAM 4 W / 4 W	DOWNSTREAM SC1 = 1.5 W / 1.2 W SC2 = 0.5 W / 2.3 W SC3 = 0.7 W / 4.1 W SC4 = 1.0 W / 4.6 W	7 total coils per magnet Need to determine max power per coil in asymmetric case
3	Coil current direction (also refer to 'Magnetic field vector rotational direction')	Upstream	Downstream	Only US torus shown here but applies equally to the DS torus
4	Magnetic field vector rotational direction (also refer to 'Coil current direction')	CLOCKWISE (CW) - wh	nen looking downstream	Applies to both US and DS torus magnets Note: The azimuthal center of coil A in is magnet is at φ =0, which is the center of a closed sector.

3.3 MAGNET ENCLOSURES

	Item	Value		Comments
1	Torus magnet environments	UPSTREAM Nominal - 1 x 10 ⁻² Torr No higher than 10 ⁻¹ Torr	DOWNSTREAM Nominal - 1 x 10 ⁻² Torr No higher than 10 ⁻¹ Torr	Aim for leak rate of 1x10 ⁻⁸ mbar·l/s Vessel design must satisfy all JLab Pressure System requirements for vacuum vessels

3.4 COLLIMATORS / BLOCKERS / SHIELD ELEMENTS

3.4 (COLLIMATORS / BLOCK	ERS / SHIELD ELEMENTS	
	Item	Value	Comments
1	Machining accuracy	Collimator #1 = Outer \pm 0.20 mm, Inner \pm 0.10 mm Collimator #2 and #4 acceptance region machining = \pm 0.10 mm of design Collimator 2 acceptance must be concentric to collimator 1 bore by \pm 0.50 mm Collimator #5 = \pm 0.20 mm Collimators #6a/b = \pm 0.20 mm Sieve = \pm 0.10 mm Blocker = \pm 0.20 mm Lintels = \pm 0.20 mm Collar #0 = inner diameter \pm 1 mm of nominal Collar #1 = inner diameter \pm 1.5 mm of nominal Collar 2 = inner diameter \pm 1.25 mm of nominal Side and underbelly plates = \pm 0.50 mm 2-Bounce Shield = \pm 0.50 mm	*Inner edges lead (not aluminum)
2	Location accuracy of center of items listed in row one relative to one another (dr) (combo of dx, dy)	± 1 mm	This is applicable at the center of the US face of most of the components, except for lintels, where we reference the center of the inner upstream edge

3	Collimator/Collar/Blocker	± 3mm dz for all*	dz is measured to the upstream face
	accuracy	d ϕ critical for collimators 2, 4, sieve d ϕ < 0.2°	dia ia tha natation
	(dz, dφ, dθ)	lintel ends of upstream inner radius edge within ±1 mm in radius of each other	around the beam axis
		dφ not applicable for collimator 1, blocker, collars, 2-bounce shield, and collimators 5, 6a, and 6b and side and belly shields are relative to coils (see xy above)	dθ refers to the out of parallel angle (relative to the other elements) ; defined
		collimator 1+2 center of upstream and downstream ends within \pm 0.5 mm radially (d0 \sim 0.1°)	from the parallel over the length in z
		2-bounce shield center of upstream and downstream ends within ± 1 mm radially (d $\theta \sim 0.1^{\circ}$)	or radius * Sieve and blocker
		sieve- z offset between opposite points on diameter ±1 mm (d θ $\sim 0.1^\circ)$	" must have hard stops
		collars, blocker and collimator 4 - z offset between outer radius and nominal center ±1 mm (d θ ~ 0.2°)	
4	SAM Pipe Machining and	dr = 5 mm	This is for the pipe;
	Position rolerances	$dz = 5 \text{ mm}, d\theta = 1.1^\circ, d\phi = 5^\circ$	themselves
-	Cooling conscity should be	Collimator $H_1 = 4.7$ MM (4.7 MM	Nominal ideal
Э	able to handle the stated	Collimator $#1 = 4.7 \text{ KW} / 4.7 \text{ KW}$	operation with
	xpected power deposition (with symmetric /	Collimator $#4 = 60 \text{ W} / 60 \text{ W}$	centered beam.
	asymmetric map at 70 μA)		1mm offset beam
		Coll #5 =1.5 W / 3.6 W (per piece, 14 total)	
		Coll #6a = 1.1 W / 4.2 W (per piece, 14 total)	
		Coll #6b = 1.0 W / 2.6 W (per piece, 14 total)	
		Blocker = 1.4 kW	
		Sieve = 19 W (at 1uA)	
		Lintels = $7 \text{ W} / 9 \text{ W}$	
		2-bounce Shield = 322 W /324 W (upstream 50 cm)	
		US side plates 3 W / 3 W (per piece, 14 total)	
	\mathbf{v}	DS belly plates 0.6 W / 2.3 W (per piece)	

3.5 BEAM PIPE / WINDOWS / BELLOWS

	Item	Value	Comments
1	Detector Window (relative to collimator openings)	Detector Window - Aluminum with max thickness of 2 mm for main acceptance region (thinner preferred) Concentricity and thinned sections if any are centered to $dr = \pm 3$ mm (outer) and ± 1 mm inner radius $d\phi^* = \pm 1.5$ mm at inner radius of thinned portion	* this means along the azimuthal direction
2	Detector Window Maximum allowable variation in thickness	+30/-0 % of nominal window thickness only locally at weld zones.	Welds should be located in closed sectors
3	Beam pipe concentricity to beamline	±3 mm (between scattering chamber and collar 0) ±1 mm at collar 0 Downstream of collar 0 to drift pipe ±2 mm	The downstream z location of the reduced diameter section of the upstream beampipe is a potential source of background. If possible, collar-0 should be closer to the downstream end of this section, and it should be flush welded.
4	Drift Pipe	US and DS ends centered on the beam to within ±3 mm DS end will be defined by center pipe of Detector Window	
5	Bellows	See bellows specification PMAG0000-0100-S0016 MOLLER Specifications of Bellows	Bellows are required to allow flange to flange alignment imperfections and temperature changes in the Hall. This then requires that each piece of the vacuum system have supports that can take all thrust loads.
6	Gaskets of flanges	Metal seals at bellows 1, 2 and 7, peroxide-cured EPDM2 O- rings at bellows 3, 4, and 5	

3.6 FIELD MEASUREMENT

	Item	Value	Comments
1	Individual assembled magnets (US, DS 1-4)	 a) B_ø minimum between coils (number of locations TBD) b) Measurement of dipole moment in the bore (number of locations TBD) c) Stray field measurements (location of 5 Gauss line) d) Temporal field stability 	Will be defined after the prototype coil built and studies (field and tracking) are completed with the prototype as built data

3.7 INSTRUMENTATION

	Item	Value	Comments
1	Connection Wire insulation	Either insulate bare wire with Kapton or wrap Kapton around already insulated wire or 'sandwich' already insulated wire between two strips of Kapton.	Potential vendor: https://www.allectra .com/
2	Location of instrumentation	Locate all instrumentation in low radiation areas – typically these will be at the outermost radii of the coils – i.e. where the leads and water connections exit.	

4 APPLICABLE DOCUMENTS

- 1. PMAG0000-0100-A0007 MOLLER UPSTREAM AND DOWNSTREAM COIL SPECIFICATION AND REQUIREMENTS
- 2. PMAG0000-0100-A0009 MOLLER Upstream and Downstream Coil Design Targets
- 3. ASME ode B31.3 for Process Piping
- 4. NEMA Standards for Electrical Control 1C1-1954, latest revision, 155 East 44th St., N.Y., N.Y., which shall constitute the minimum acceptable standards.
- 5. Institute of Electrical and Electronics Engineers (IEEE). All electrical equipment shall conform to the latest standards of the Institute of Electrical and Electronics Engineers (IEEE).
- 6. PMAG0000-0100-S0014 Moller Magnet Power Supply specification (Upstream and Downstream)
- 7. PMAG0000-0100-S0016 MOLLER Specifications of Bellows
- 8. PMAG0000-0100-S0022 MOLLER Materials List (Inside Enclosure)