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Abstract

The change of the transverse spin asymmetry in the scattering of highly-relativistic spin-polarized
electrons from nuclei by vacuum polarization effects is calculated within the Uehling approximation.
Results are provided for 1−100 MeV electrons scattering from 31P, 64Zn, 152Sm, 197Au and 207,208Pb
at backward angles.

Polarization phenomena during elastic electron-nucleus scattering [1] provide deep insight into the
nuclear structure because of their sensitivity to interference effects. The measured spin asymmetries,
being a relativistic efffect, are particularly large for heavy targets and backward scattering angles. Such
conditions are accessible at the electron accelerators in Darmstadt (S-DALINAC) and Mainz (MAMI).
In a pilot experiment a lead target was bombarded by 14 MeV electrons which were spin-polarized
perpendicular to the beam axis. By varying the scattering angle up to 172◦ the influence of the finite
nuclear size on the respective spin asymmetry, the so-called Sherman function (also termed analyzing
power), could be verified. The accuracy of this measurement was about 3− 5%.

Ambitious investigations require, however, high-precision measurements of the beam polarization and
its control during the experiment. An accuracy in the percent region or even below seems feasible in
the near future due to a new generation of Mott and Compton polarimeters [2, 3]. Such polarimeters
will also be integrated into the chain of new optimized polarimeters designed for parity-violating electron
scattering experiments [5]. For example, a precision measurement of the Weinberg angle θw is planned
at the MESA facility in Mainz which soon will be under construction [6].

When the precision gets better than 1%, quantum electrodynamic (QED) effects have to be considered
in a calculation of the spin asymmetry at beam energies beyond the MeV region. An accurate knowledge
of the Sherman function does not only provide a prediction for experiment, but, once verified, it can be
used to determine the degree of beam polarization [2]. Hence we address the question to which extent
QED effects may change the Sherman function. To lowest order in the fine-structure constant these QED
corrections consist of the self-energy and the vacuum polarization (for their Feynman diagrams [7], see
Fig.1). For heavy nuclei with a large charge number Z the QED effects cannot be treated perturbatively,
and the field of the nucleus has to be fully accounted for in any calculation of the electron propagator.
Such calculations were performed for the QED corrections to electronic energy levels (see e.g. [8] for early
work), radiative electron capture in ion-atom collisions [9] and radiative recombination in electron-atom
collisions [10]. For the latter, the changes in the cross section were of the order of one percent (or below)
at electron impact energies of 0.5− 5 MeV.

The present work is restricted to the consideration of vacuum polarization. This provides a qualitative
estimate of the QED corrections since the self-energy effects tend to be of opposite sign and of roughly
twice the size of the vacuum-polarization effects [10].
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Fig.1 QED corrections to elastic electron scattering. (a) self-energy, (b) vacuum polarization. The
double line indicates an electron in the field VT of the target nucleus, the wavy line a virtual photon.

The transition matrix element for vacuum polarization during elastic scattering, as represented by
the diagram in Fig.1b, is (in atomic units, ~ = m = e = 1) given by [11, 8]

Sfi = − 1

c2

∫
d4x1 d

4x2

3∑
µ=0

(
ψ̄f (x2) γµ ψi(x2)

)
DF (x2 − x1) Tr (γµSF (x1, x1)), (1)

where ψi and ψf are the dressed initial and final electronic states (i.e. scattering eigenstates to the nuclear
potential VT ), DF is the photon propagator, γµ are Dirac matrices and SF is the Feynman propagator
of the dressed electronic states. Sfi can be rewritten in terms of an effective potential U ,

Sfi = − i

c

∫
d4x2 ψ

+
f (x2) U(x2) ψi(x2), (2)

where U is a functional of SF . The Uehling potential Ue is obtained from this effective potential by
retaining only the term linear in Zα in an expansion of SF in terms of the nuclear potential strength and
by renormalizing subsequently [8]. Ue can be expressed by a simple integral [12, 13],

Ue(r) = − 2Z

3πc

∫
dr′

%(r′)

|r − r′|
χ1(2c |r − r′|), (3)

where the function χn with n = 1 is defined by

χn(x) =

∫ ∞
1

dt e−xt
1

tn

(
1 +

1

2t2

) (
1 − 1

t2

)1/2

, (4)

and Z %(r) is the nuclear charge density which generates VT . If % is spherically symmetric, (3) reduces
to [14]

Ue(r) = − 2

3c2
Z

r

∫ ∞
0

r′dr′ %(r′) [χ2(2c|r − r′|) − χ2(2c(r + r′))] , (5)

which is small by a factor of α = 1/c as compared to the target field. The function χ2 is given by (4)
with n = 2. Alternatively, χ1 and χ2 can be parametrized in terms of rational functions of polynomials
with coefficients tabulated in [13].
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At asymptotically large distances compared to the nuclear radius RN (say, r & 50 RN ) it is sufficient
to keep the r′-dependence on the rhs of (3) only in %(r′), such that Ue(r) reduces to the point-nucleus
Uehling potential [13],

U∞e (r) = − 2

3cπ

Z

r
χ1(2cr), r � RN . (6)

Rather than treating the modification of the elastic scattering by the Uehling potential perturbatively
via adding (2) (with U replaced by Ue) to the transition amplitude from potential scattering, the Dirac
equation is solved in the combined potential VV P = VT + Ue,

(−icα∇ + βc2 + VV P (r)) ψV P (r) = E ψV P (r), (7)

and the differential cross section dσ/dΩ for the elastic scattering of spin-polarized electrons from nuclei is
obtained from a phase shift analysis of the scattering states ψV P (r). In this way the Uehling part Ue of
the vacuum polarization potential is included to all orders [15, 9]. Note that in our approach the electron
mass is retained but nuclear recoil effects are neglected.

For the solution of the Dirac equation the Fortran package RADIAL of Salvat et al [16] was employed.
This was possible because the required initial condition on the potential ( lim

r→0
rVV P (r) <∞) is satisfied,

since lim
r→0

rUe(r) = 0. Numerical details are described in [17]. In calculating ψV P we have disregarded

any screening by the bound target electrons since such effects do not play a role at the high momentum
transfers considered here. Magnetic scattering (from nuclei carrying spin [18]) is also not included in our
estimate of the QED effects. Its influence on the spin asymmetry depends strongly on the nuclear species
[19] and is small for high-Z nuclei at low energy (see below).

The spin asymmetry S for electrons spin-polarized perpendicular to the scattering plane (defined by
the momenta of incoming and outgoing electron) and scattering from an arbitrary potential V is defined
as the relative cross section difference when the spin of the beam electron is flipped (see e.g. [1, 17]),

S(V ) =
dσ/dΩ(↑) − dσ/dΩ(↓)
dσ/dΩ(↑) + dσ/dΩ(↓)

. (8)

Its change dS by the influence of the Uehling potential is obtained from

dS =
S(VV P )

S(VT )
− 1 (9)

where S(VT ) is calculated from the solution of (7) with Ue omitted.

We have investigated the backward scattering of electrons from the spin-zero nuclei 64Zn (Z = 30),
152Sm (Z = 62) and 208Pb (Z = 82) as well as from the spin- 12 nuclei 31P (Z = 15) and 207Pb. The
respective potentials VT and Ue were obtained from the nuclear charge density which exists in terms
of a Fourier-Bessel expansion [20]. Also 197Au (Z = 79), a favourite target for future experiments,
was considered. For this nucleus a two-parameter Fermi charge density was used [20]. The accuracy of
our estimates for dS is about 1% below 40 MeV, but may deteriorate to 10% or more near 100 MeV.
The reason is that at high collision energies and backward angles the Dirac equation has to be solved
numerically up to very large radial distances (r > 100 RN ) and very high angular momenta (l > 100)
when Ue is included, in order to achieve sufficient accuracy in S.

For 197Au results for S(VT ) and for dS are shown in Fig.2 as a function of beam energy Ekin = E−c2
at a scattering angle of θ = 164◦ which corresponds to the experimental set-up at the MAMI accelerator
for the planned measurements of the beam polarization [2]. Since Ue is negative like the nuclear potential,
the inclusion of Ue leads to an enhancement of both the cross section and the spin asymmetry (in the
sense that S is more negative at the backmost angles if Ue is included), such that dS > 0 irrespective
of Z as long as the collision energy is well below 50 MeV. The enhancement of the cross section and
of dS increases monotonically with Ekin for moderate energies as is generally expected for the QED
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effects [9, 10]. For the Mott polarimeter operating at 3.5 MeV [2], dS = 0.36%. This results from
S(VV P ) = −0.45408 and S(VT ) = −0.45247 (Fig.2b) according to (9).
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Fig.2. (a) Spin asymmetry S(VT ) from e + 197Au collisions at θ = 164◦ (full line) and from e + 64Zn
at 178◦ (dashed line) as a function of beam energy Ekin. (b) Change dS for e + 197Au at 164◦ according
to (9).

Fig.3 displays the change of spin asymmetry for the 152Sm and 207Pb targets, but now at a backmost
scattering angle (178◦) which is accessible at the S-DALINAC set-up [21]. dS is shown in a large energy
region where diffraction effects come into play. Such effects are due to the finite nuclear size and arise
when the electrons reach or penetrate the nuclear surface. These structures occur not only in the cross
section and in the spin asymmetry (see e.g. [22, 23], or Fig.2a for 64Zn) but, as seen from Fig.3, they also
modulate the vacuum-polarization induced changes of S. In particular, dS shows oscillations with Ekin
in the same way as does S(VT ) which is displayed in [17] for 208Pb. It should be noted, however, that
dS as defined by (9) largely overestimates the influene of vacuum polarization if the diffraction effects
lead to a spin asymmetry which approaches zero or changes sign. Such spurious effects from a near-zero
denominator in (9) cause e.g. the steep rise of dS for 152Sm near 90 MeV, and for 64Zn near 60 MeV (see
Figs.2a and 4).

Also shown in Fig.3 is the influence of magnetic scattering on S for 207Pb, which is of opposite sign
and results from the current interaction between the scattering electron and a nucleus carrying spin. The
respective changes in the spin asymmetry (without vacuum polarization effects) are calculated within
the distorted-wave Born approximation (DWBA) as described in [19]. The scattering from the strong
nuclear potential in 207Pb largely dominates the magnetic scattering even at an angle as large as 178◦.
Therefore, the magnetic effects only come into play at energies near and above 100 MeV. For the spinless
isotope 208Pb the change dS due to vacuum polarization is the same as shown in Fig.3 (up to 1%), while
magnetic scattering is absent.
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Fig.3. Change dS of the spin asymmetry from e + 152Sm and 207Pb collisions at θ = 178◦ as a
function of collision energy Ekin. 207Pb: full line, effect from vacuum polarization as calculated from (9);
dash-dotted line, effect from magnetic scattering (with respect to S(VT )), calculated within the DWBA
[19]. 152Sm: dashed line, dS from (9).

Fig.4 shows the results for 31P and for 64Zn at θ = 178◦. For these less extended nuclei the onset of the
diffraction structures occurs at a higher energy, and the vacuum polarization effects increase smoothly up
to Ekin ∼ 50 MeV. However, for 31P, the magnetic scattering plays a decisive role at much lower energies
than in the case of 207Pb due to the larger magnetization current density and the weaker electric potential
of this nucleus. Thus, at energies beyond 40 MeV the vacuum polarization effects are completely veiled.
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Fig.4. Change dS of the spin asymmetry from e + 31P and 64Zn collisions at θ = 178◦ as a function
of Ekin. dS as calculated from (9): full line, 31P; dashed line, 64Zn. Included is the change of S by
magnetic scattering for 31P [24] (dash-dotted line).
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The angular dependence of dS is depicted in Fig.5 for the two collision energies 3.5 MeV and 30
MeV. For the light target (64Zn) as well as for the heavy target (207Pb) the shift dS ∼ 0.3 − 0.4% is
approximately constant for θ & 80◦ at Ekin = 3.5 MeV. In contrast, at the higher energy, dS increases
strongly with angle for both nuclei and flattens only beyond 130◦. The change in slope at the backmost
angles is related to the steep minimum of S(VT ) near 170◦ (3.5 MeV), respectively at 178◦ − 179◦ (30
MeV) [1, 24].
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Fig.5. Change dS of the spin asymmetry from e + 64Zn and 207Pb collisions at Ekin = 3.5 and 30 MeV
as a function of scattering angle θ. 207Pb: full line, 3.5 MeV; dashed line, 30 MeV. 64Zn: short-dashed
line, 3.5 MeV; dotted line, 30 MeV.

In conclusion, we have shown that at backward scattering angles the vacuum polarization contribution
to the QED corrections affects the spin asymmetry for a beam energy of 3.5 MeV by 0.3 − 0.4% for all
nuclei investigated. Up to ∼ 30 MeV the change dS of the spin asymmetry increases monotonically with
Ekin and is weakly dependent on the nuclear species. In the region 30− 50 MeV dS is larger for the light
nuclei (31P, 64Zn), while it decreases for the heavier nuclei at angles near 178◦. As a guideline, dS . 1%
for energies near and below 40 MeV irrespective of the nuclear species.

Beyond 40 MeV modifications resulting from the diffraction effects in electron scattering complicate
the picture. For nuclei carrying spin the contribution of magnetic scattering also comes into play at
the backmost angles, the more so, the lighter the nuclei. Since the magnetization densities are not
known to a sufficient accuracy it does not seem feasible to extract experimentally QED effects of the
order of 1% when magnetic scattering becomes important. Therefore, spin-0 nuclei are more appropriate
candidates. Alternatively, a decrease of the scattering angle θ leads to a moderate reduction of the vacuum
polarization effects and to a disappearance of magnetic scattering. However, since the spin asymmetry
rapidly decreases when θ is lowered precision measurements will become very difficult.
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[7] G.Köpp, F.Krüger, Einführung in die Quanten-Elektrodynamik, Teubner, Stuttgart, 1997, §8

[8] G.Soff, P.J.Mohr, Phys. Rev. A 38 (1988) 5066.

[9] T.Beier, A.N.Artemyev, J.Eichler, V.M.Shabaev, V.A.Yerokhin, Phys. Scr. T80 (1999) 322.

[10] V.M.Shabaev, V.A.Yerokhin, T.Beier, J.Eichler, Phys. Rev. A 61 (2000) 052112.

[11] J.D.Bjorken, S.D.Drell, Relativistic Quantum Mechanics, McGraw-Hill, New York, 1964.

[12] E.A.Uehling, Phys. Rev. 48 (1935) 55.

[13] L.W.Fullerton, G.A.Rinker Jr., Phys. Rev. A 13 (1976) 1283.

[14] S.Klarsfeld, Phys. Lett. 66B (1977) 86.

[15] T.Beier, G.Plunien, M.Greiner, G.Soff, J. Phys. B 30 (1997) 2761.

[16] F.Salvat, J.M.Fernández-Varea, W.Williamson Jr., Comput. Phys. Commun. 90 (1995) 151.

[17] D.H.Jakubassa-Amundsen, R.Barday, J. Phys. G 39 (2012) 025102.

[18] F.Gross, Relativistic Quantum Mechanics and Field Theory, Wiley, New York, 1993.

[19] D.H.Jakubassa-Amundsen, J. Phys. G 41 (2014) 075103.

[20] H.De Vries, C.W.De Jager, C.De Vries, At. Data Nucl. Data Tables 36 (1987) 495.

[21] J.Enders et al, J. Phys. Conf. Ser. 295 (2011) 012152.

[22] D.R.Yennie, D.G.Ravenhall, R.N.Wilson, Phys. Rev. 95 (1954) 500.

[23] E.D.Cooper, C.J.Horoiwitz, Phys. Rev. C 72 (2005) 034602.

[24] D.H.Jakubassa-Amundsen, Nucl. Phys. A 896 (2012) 59.

7


