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1 Purpose of Calculating Rates

The calculation of rates from simulation is what allows us direct comparison to data. Quite simply
the rate is a calculation of how many events hit our detectors per second per micro-Amp from a given
generator. The rate quantity is comparable between different generators and between simulations
and data. The differential rate in our detector from one point in phase space ~v is:

dR(~v) = L(~v)σ(~v)ε(~v)dv (1)

where L(~v) is the luminosity, σ(~v) is the cross-section of the physics of interest and ε(~v) is the
acceptance function of our detectors (essentially the chance that an event near ~v will be detcted).
While L(~v) and σ(~v) are calculated exactly based on theory, ε(~v) is a value obtained by simulation.
Typically we only determine the shape of this function with respect to scattering angle since our
simulated detectors care little about what happens in the target and have perfect energy resolution.

2 Single Scattering Calculation

For a single scattering event, our phase space vector becomes ~v = (x, y, z, E, χ, ψ) where χ is the
scattering angle and ψ is the azimuthal angle. The total rate in a detector is then

R =

∫
V
dR(~v) (2)

where the integral is carried out over the entire phase space available V . The integrals over x, y
are trivial while the dependence upon z and E are small enough to simply ignore. This yields:

R =
NAρ

A
NBd

∫ ψmax

ψmin

∫ χmax

χmin

σ(χ, ψ)ε(χ, ψ) sinχdχdψ (3)

From this point there are two methods that I’ve attempted to approximate this integral numerically.
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2.1 Method 1: Reimann Sum

We divide the integral into bins in χ and ψ

R ≈ NAρ

A
NBd

∑
i

∑
j

σijεij sinχi∆χ∆ψ (4)

This method gives good results which are in decent agreement with data as seen in Table 1.

d (nm) Rsim Rdata

52 10.25 ± 0.67 9.93 ± 0.09

215 42.49 ± 1.46 46.50 ± 0.48

389 77.15 ± 2.08 82.58 ± 1.04

487 95.75 ± 2.40 97.74 ± 1.00

561 109.89 ± 2.62 128.66 ± 1.32

775 153.20 ± 3.28 178.30 ± 1.86

837 163.88 ± 3.45 209.30 ± 2.15

944 186.50 ± 3.77 246.00 ± 2.53

Table 1: Simulated rates for single scattering averaged from left and right detectors. Data averaged
from https://wiki.jlab.org/ciswiki/images/e/ef/Rates.pdf

.

2.2 Method 2: Monte Carlo Integration

In this method we try to solve the integral with a Monte Carlo Estimator method. Events are
generated from a distribution, g(~v) = C sinχ. If we define, f(~v) = σ(χ, ψ)ε(χ, ψ) sinχ can use the
following estimator:

R =
NAρ

A
NBd

∫ ψmax

ψmin

∫ χmax

χmin

f(~v)dχdψ (5)

=
NAρ

A
NBd

∫ ψmax

ψmin

∫ χmax

χmin

f(~v)

g(~v)
g(~v)dχdψ (6)

≈ 1

n

NAρ

A
NBd

n∑
i

f(~vi)

g(~vi)
(7)

≈ 1

n

NAρ

A
NBd

n∑
i

σ(χi, ψi)ε(χi, ψi)

C
(8)

Where n is the number of events generated and, by definition:

1

C
=

∫ ψmax

ψmin

dψ

∫ χmax

χmin

sinχdχ (9)

=
π

9

[
cos

π

36
− cos

π

18

]
(10)

Using this method we see some issues as highlighted in Table 2
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Method 1 Method 2

d (nm) RL RR RL RR
52 4.97 15.52 5.34 8.28

215 20.63 64.34 22.10 34.55

389 37.50 116.80 40.29 62.99

487 46.32 145.19 49.86 78.91

561 53.96 165.83 57.81 88.77

775 74.40 232.01 80.35 122.98

837 80.11 247.65 86.09 133.39

944 90.76 282.25 98.08 152.05

Table 2: Simulated rates for single scattering averaged for each detector from each method. I
currently have no explanation for why Left roughly matches but right does not.

3 Double Scattering Rates

We look again at the differential form of the scattering rate. In this case we consider the rate by
pieces. The rate from the initial scattering at position (x, y, z) and energy (prior to entering the
target), E towards the second scattering position along direction (θ, φ) is given by:

dR1(~v) = L(~v)σ1(~v)dv (11)

=
NAρ

A

NB

(2π)3/2σxσyσE
exp

[
x2

2σ2x
+

y2

2σ2y
+

E2

2σ2E

]
σ1(z, E, θ, φ) sin θdxdydzdEdθdφ (12)

The rate that our detector sees then from the second scattering is then:

dR(~v) =
NAρ

A
dR1(~v)σ2(z, E, ξ, θ, φ, χ, ψ)ε(χ, ψ) sinχdξdχdψ (13)

We define:

f(~v) = exp

[
x2

2σ2x
+

y2

2σ2y
+

E2

2σ2E

]
σ1(~v)σ2(~v)ε(χ, ψ) sin θ sinχ (14)

and note that we throw from a distribution:

g(~v) = C exp

[
x2

2σ2x
+

y2

2σ2y
+

E2

2σ2E

]
sin θ sinχ (15)

and then we can define our integral of interest in terms of these functions:

R =

(
NAρ

A

)2 NB

(2π)3/2σxσyσE

∫
V

f(~v)

g(~v)
g(~v)dv (16)

Using the Reimann sum method is not available to us due to the high dimension of the integral
and the difficulty of the integration limits. So we instead try to integrate numerically with a Monte

3



Carlo estimator:

R =
1

n

(
NAρ

A

)2 NB

(2π)3/2σxσyσE

n∑
i

f(~vi)

g(~vi)
(17)

=
1

C

1

n

(
NAρ

A

)2 NB

(2π)3/2σxσyσE

n∑
i

σ1(~vi)σ2(~vi)ε(χi, ψi) (18)

The problems begin with the integral over V as evidenced by the determination of C.

1 =

∫
V
g(~v)dv (19)

= CI

∫ ∞
−∞

e−x
2/2σ2

xdx

∫ ∞
−∞

e−y
2/2σ2

ydy

∫ ∞
−∞

e−E
2/2σ2

EdE

∫ 2π

0
dφ

∫ ψmax

ψmin

dψ

∫ χmax

χmin

sinχdχ (20)

Where

I =

∫ d

0

∫ π

0

[∫ ξmax(θ,z)

0
dξ

]
sin θdθdz (21)

The variable ξ refers to distance from the first scattering point and χmax(θ, z) is the maximum
distance the second scattering can be generated given the initial scattering position and angle.
Since the simulation also has the caveat that all electrons generated must not have lost more than
500 keV in the target (these would not be counted in our physical asymmetry in any case), we put
a distance limit for those particles travelling at θ ≈ π/2. Thus we define:

χmax(θ, z) =
d− z
| cos θ|

[
1−H

(
d− z
| cos θ|

−D
)]

(22)

where D = 157µm. Since this function is symmetric about θ = π/2 we have

I = 2

∫ d

0

∫ π/2

0

d− z
| cos θ|

[
1−H

(
d− z
| cos θ|

−D
)]

sin θdθdz (23)

= 2

∫ d

0
(d− z)

[∫ cos θ=α(z)

0

sin θ

cos θ
dθ

]
dz (24)

where α(z) = (d− z)/D and 0 ≤ α(z) < 1 based on our target dimensions. We then see:

I = 2

∫ d

0
(d− z)

[∫ 1

α

du

u

]
dz (25)

= −2

∫ d

0
(d− Z) log

(
d− z

157µm

)
dz (26)

=
1

2
d2
[
1− 2 log

(
d

D

)]
(27)

All of our target thickness behavior is encoded in this and unfortunately this depends upon an
arbitrary cutoff, D. This leads to non-physical results when I look at the two-scattering processes
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using my assumption of D = 157µm. I need additional input to help me determine where I’m
going wrong with these calculations. My intuition tells me that there is probably some exponential
behavior that governs the probability of the second scattering occuring at some length, ξ along it’s
path in the target. That is

P (ξ) ∝ e−ξ/λ (28)

But I’m unsure how to generate an appropriate physical value for λ.
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