
Chapter 4

Interpolation/Extrapolation Techniques

4.1 Introduction

Often experimental results are available for selected conditions, but values are needed for
intermediate conditions. For example, the fall speeds of raindrops are measured for specific
diameters, but calculation of a rain-rate from a measured drop size distribution requires
fall speeds for intermediate diameters. The estimation of such intermediate values is called
interpolation . Another common use for interpolation is when the functional dependence
is so complicated that explicit evaluation is costly in terms of computer time. In such cases,
it may be more efficient to evaluate the function at selected points spanning the region of
interest and then use interpolation, which can be very efficient, to determine intermediate
values.

Extrapolation is the extension of such data beyond the range of the measurements. It is
much more difficult, and can result in serious errors if not used and interpreted properly.
For example, a high-order polynomial may provide a very good fit to a data set over its
range of validity, but if higher powers than needed are included, the polynomial may
diverge rapidly from smooth behaviour outside the range of the data.

In this section we will learn about:

• Interpolating within the set of known data (Newton’s and Lagrange’s algorithms)

• Extrapolating beyond the set of known data (Richardson extrapolation and Padé ap-
proximation)

• Best fit to and smoothing of data (least squares and cubic splines)

47

48 IV. I/E

4.2 Interpolation

4.2.1 Newton interpolation

This is a method to construct a polynomial through all given data points. If there are n+1
(from 0 to n) data values, a unique polynomial Pn of degree n can be constructed that will
pass through all the points.

Figure 4.1: The dots denote the data points (xk, yk), while the curve shows the interpolation polynomial.

Given a set of n+1 data points

(x0, y0= f (x0)), . . . , (xn, yn= f (xn)) , (4.1)

where no two xi are the same, Newton’s method consists in solving the simultaneous
equations that result from requiring the polynomials to pass through the data values. It is
easy to define the interpolating polynomial if we construct it in the following form

Pn(x) = C0 + C1(x−x0) + C2(x−x0)(x−x1) + . . . + Cn(x−x0)(x−x1) · · · (x−xn−1) . (4.2)

Now using the interpolation condition Pn(xi) = f (xi) we obtain the following triangular
system of equations for the coefficients Ci

f (x0) = C0 , (4.3)
f (x1) = C0 + C1(x1−x0) , (4.4)
f (x2) = C0 + C1(x1−x0) + C2(x2−x0)(x2−x1) , (4.5)

...

f (xn) = C0 + C1(xn−x0) + C2(xn−x0)(xn−x1) + . . .
+ Cn(xn−x0)(xn−x1) · · · (xn−xn−1) (4.6)

Ouyed & Dobler

4.2. Interpolation 49

From this system we easily find

C0 = f (x0) , (4.7)

C1 =
f (x1) − f (x0)

x1−x0
, (4.8)

C2 =

f (x2)− f (x1)
x2−x1

−
f (x1)− f (x0)

x1−x0

x2−x0
, (4.9)

...

The corresponding algorithm, is the so-called Newton’s divided differences algorithm and
is given in § 4.6.1.

The expressions on the right hand side of the equations above are usually denoted by
f [xi], f [xi, xi−1], f [xi, xi−1, xi−2], In this notation we can write:

Pn(x) = f [x0] + f [x1, x0](x−x0) + f [x2, x1, x0](x−x0)(x−x1) +
+ f [xn, xn−1, . . . , x0](x−x0)(x−x1) · · · (x−xn−1) . (4.10)

One can show that

f [xk, xk−1, . . . , x0] =
k∑

i=0

f (xi)
(xi−x0)(xi−x1) · · · (xi−xi−1)(xi−xi+1) · · · (xi−xk)

. (4.11)

The two previous expressions define the interpolating polynomial in Newton’s form. This
form of the interpolating polynomial is convenient if we have sequential growth of the
grid, i.e. we add an (n+2)-nd point and increase the degree of the polynomial from
n to (n+1). This procedure requires the additional computation of only a single term
f [xn+1, xn, . . . , x0](x−x0)(x−x1) · · · (x−xn) in the expression for Pn(x).

4.2.2 Lagrange interpolation

The Lagrange polynomials provide a convenient alternative to solving the simultaneous
equations that result from requiring the polynomials to pass through the data values.
Lagrange’s method is similar to Newton’s, and both yield the same (uniquely defined)
interpolating polynomial.

The Lagrange interpolation formula is

f (x) =
N∑

i=1

f (xi)PL
i (x) ,

where f (xi) are the known values of the function and f (x) is the desired value of the
function. The Lagrange polynomial PL

i is the polynomial of order N−1 that has the value
1 when x = xi and 0 for all x j,i:

PL
i (x) =

∏
j,i(x−x j)∏
j,i(xi−x j)

.

Ouyed & Dobler

50 IV. I/E

Table 4.1: Data values for interpolating the tanh function.

x0 = −1.5 x1 = −0.75 x2 = 0.0 x3 = 0.75 x4 = 1.5

f (x0) = −14.1014 f (x1) = −0.931596 f (x2) = 0.0 f (x3) = 0.931596 f (x4) = 14.1014

This is a particularly convenient way to interpolate among tabulated values with polyno-
mials when data points are not evenly spaced.

Figure 4.2: The tangent function and its interpolant of order 4 (Lagrange interpolation)

It is usually preferable to search for the nearest value in the table and then use the lowest-
order interpolation consistent with the functional form of the data. High-order polynomials
that match many entries in the table simultaneously can introduce undesirable rapid
fluctuations between tabulated values. If used for extrapolation with a high-order polynomial,
this method may give serious errors.

Example

We wish to interpolate f (x) = tan(x) at the points shown in Table 4.1.

Ouyed & Dobler

4.2. Interpolation 51

The basic Lagrange polynomials are

PL
0(x) =

x−x1

x0−x1
·

x−x2

x0−x2
·

x−x3

x0−x3
·

x−x4

x0−x4
=

1
243

x(2x−3)(4x−3)(4x+3) , (4.12)

PL
1(x) =

x−x0

x1−x0
·

x−x2

x1−x2
·

x−x3

x1−x3
·

x−x4

x1−x4
=
−8
243

x(2x − 3)(2x + 3)(4x − 3) , (4.13)

PL
2(x) =

x−x0

x2−x0
·

x−x1

x2−x1
·

x−x3

x2−x3
·

x−x4

x2−x4
=

1
243

(243 − 540x2 + 192x4) , (4.14)

PL
3(x) =

x−x0

x3−x0
·

x−x1

x3−x1
·

x−x2

x3−x2
·

x−x4

x3−x4
=
−8
243

x(2x − 3)(2x + 3)(4x + 3) , (4.15)

PL
4(x) =

x−x0

x4−x0
·

x−x1

x4−x1
·

x−x2

x4−x2
·

x−x3

x4−x3
=

1
243

x(2x + 3)(4x − 3)(4x + 3) . (4.16)

Thus the interpolating polynomial is

f (x) =
1

243

[
f (x0) x(2x−3)(4x−3)(4x+3) − 8 f (x1) x(2x−3)(2x+3)(4x−3)

+ f (x2) (243 − 540x2 + 192x4) − 8 f (x3) x(2x−3)(2x+3)(4x+3)

+ f (x4) x(2x+3)(4x−3)(4x+3)
]

(4.17)

= −1.47748x + 4.83456x3 . (4.18)

4.2.3 Runge’s phenomenon

When a function f is approximated on an interval [a, b] by means of an interpolating
polynomial P, the discrepancy between f and P will (theoretically) be zero at each node
of interpolation. A natural expectation is that the function f will be well approximated
at intermediate points and that, as the number of nodes increases, this agreement will
become better and better. Historically, it was a big surprise that this assumption is not
generally true.

Runge’s phenomenon is a problem which occurs when using polynomial interpolation
with polynomials of high degree. It was discovered by Carl David Tolmé Runge when
exploring the behaviour of errors when using polynomial interpolation to approximate
certain smooth and simple functions.

A specific example of this remarkable phenomenon is provided by the Runge function :

f (x) =
1

1 + x2 , (4.19)

on the interval [−5, 5].

Let Pn be the polynomial that interpolates this function at n+1 equally spaced points on
the interval [−5, 5], including the endpoints.

Ouyed & Dobler

52 IV. I/E

Equally spaced nodes

To use the Newton method, we select 11 equally spaced nodes (i.e. we fit a polynomial of
degree 10).

In the interval [a, b], the set of n equidistant nodes is given by

xi = a + (i−1)
b−a
n−1

1 ≤ i ≤ n . (4.20)

As shown in Figure 4.3, the resulting curve assumes negative values, which of course, f (x)
does not have! More specifically, the resulting interpolation oscillates toward the end of
the interval. Adding more equally spaced nodes – and thereby obtaining a higher-degree
polynomial – only makes matters worse with wilder oscillations.

Lagrange equidistant

−4 −2 0 2 4
−0.5

0.0

0.5

1.0

1.5

Figure 4.3: Polynomial interpolation of the Runge function (dashed), using equidistant nodes.

Thus, contrary to intuition, equally distributed nodes are a very poor choice in interpola-
tion.

Nevertheless, polynomial interpolation is possible for any reasonable function. This is the
essence of Weierstrass’s interpolation theorem (stated in 1885):

“. . . every continuous function in an interval (a, b) can be represented in that
interval to any desired accuracy by a polynomial.”

So far, our conclusion from Runge’s phenomenon is merely that polynomial interpolation
through all given points does often not yield that representation.

Interpolation strategies that work better include using the non-equidistant Chebyshev nodes
(see below), or Hermite interpolation , where the first derivative of the function f ′(xi) is
matched as well as the function value f (xi).

Ouyed & Dobler

4.2. Interpolation 53

Chebyshev nodes

In the example above, polynomial interpolation at equally spaced points yields a poly-
nomial oscillating above and below the true function. This oscillation is reduced (and
convergence of the interpolation polynomials achieved) by choosing interpolation points
at Chebyshev nodes.

In the interval [a, b] a set of Chebyshev nodes will be defined as:

xi =
a + b

2
+

b − a
2

cos
(i−1
n−1

π
)

1 ≤ i ≤ n . (4.21)

Lagrange Chebyshev

−4 −2 0 2 4
−0.5

0.0

0.5

1.0

1.5

Figure 4.4: Polynomial interpolation of the Runge function using Chebyshev nodes.

Using Chebyshev nodes for interpolating the Runge function, we see (Fig. 4.4) that the
oscillations are still there, but they don’t grow with increasing number of points, but rather
decrease in amplitude. You will find (see the exercises for this chapter) that the resulting
polynomial curve needs to fit a 9-th order polynomial before the curve starts to appear
significantly smoother.

4.2.4 Cubic spline interpolation

A problem with polynomial interpolation is that higher-order polynomials sometimes
produce undesirable fluctuations when the polynomials are forced to fit the data exactly
(see the Runge phenomenon in the previous section). Spline interpolation provides a
technique for obtaining a smoother interpolation and provides a solution to the problem
of Runge’s phenomenon.

Ouyed & Dobler

54 IV. I/E

To obtain smoother interpolants, one uses splines which are piecewise polynomial func-
tions1 with continuity requirements imposed on their derivatives at the nodes.

The most common example is the cubic spline where k = 3. A cubic spline si(x) = P3(x)
is constructed for each interval [xi−1, xi] between data points by determining the four
polynomial coefficients, (a, b, c, d).

The two first requirements are that the endpoints of the polynomial match the data:

s(xi−1) = f (xi−1) and s(xi) = f (xi) .

The two other constraints arise from the requirement that the first and second derivatives
be the same as in adjoining intervals (these constraints are shared with the nearby data
intervals, so only provide two constraints). It is conventional to specify that the second
derivatives vanish at the endpoints of the data set (“natural splines”). This then specifies
a set of simultaneous equations to be solved for the interpolating function. Computer
routines are readily available to perform these interpolations.

Consider the case of n+1 nodes, i.e. n intervals between nodes. If we define the spline
function on each interval as Si(x) we can write:

Si(x) = ai + bi(x−xi−1) + ci(x−xi−1)2 + di(x−xi−1)3 , (4.22)

for xi−1 < x < xi, combining these functions in such a way that the resulting approximation
is continuous and has 2 continuous derivatives (no visible kinks).

The 4 steps/conditions involved in the technique are:

i) Si(xi−1) = yi−1, which yields n equations, for i = 1 to n,

ai = yi−1 (4.23)

ii) Si(xi) = yi, which yields n equations, for i = 1 to n,

ai + bi ∇xi + ci ∇x2
i + di ∇x3

i = yi , (4.24)

where ∇xi ≡ xi − xi−1.

iii) S′k(xi) = S′i+1(xi), which yields n−1 equations, for i = 1 to n−1,

bi + 2ci ∇xi + 3di ∇x2
i = bi+1 (4.25)

iv) S′′k (xi) = S′′i+1(xi), which yields n−1 equations, for i = 1 to n−1,

2ci + 6di ∇xi = 2ci+1 (4.26)
1In the piecewise interpolation technique we divide the interval I = [a, b] into a set of m subintervals.

We then use polynomial interpolation of order, say, k in each of the subintervals, usually with k � m. For
example, piecewise linear interpolation (k = 1) is obtained when the interpolation points are connected by
straight lines.

Ouyed & Dobler

4.3. Extrapolation 55

Eq. (4.22) states that S(x) consists of piecewise cubic polynomials.

Properties i and ii state that the piecewise cubics interpolate the given set of data points.

Property iii requires that the piecewise cubics represent a smooth continuous function.

Property iv states that the second derivative of the resulting function is also continuous.

Hence, we have 4n unknowns (the vectors of coefficients a, b, c and d) and (4n−2) equations.
By adding two additional equations, we can uniquely solve for the unknown vectors.

Spline equidistant

−4 −2 0 2 4
−0.5

0.0

0.5

1.0

1.5

Figure 4.5: Cubic spline fit to the Runge function, using the same points as in Fig. 4.3.

Going back the Runge function we studied in Sec. 4.2.3, let us apply cubic spline interpo-
lation to it. As can clearly be seen in Figure 4.5 even with only 8 nodes the cubic spline
does a much better job at interpolating than the direct interpolating polynomial methods.

4.3 Extrapolation

4.3.1 Richardson extrapolation

An important problem that arises in many scientific and engineering applications is that of
approximating limits of infinite sequences which in most instances converge very slowly.
Thus, to approximate limits with reasonable accuracy, it is necessary to compute a large
number of terms, and this is in general costly. These limits can be approximated eco-
nomically and with high accuracy by applying suitable extrapolation (or convergence
acceleration) methods to a small number of terms.

In many problems, such as numerical integration or differentiation, approximate value for
some quantity is computed based on some step size. Ideally, we would like to obtain the

Ouyed & Dobler

56 IV. I/E

limiting value as the step size approaches zero, but we cannot take arbitrarily small step
sizes because of excessive cost or round-off error. Based on values for nonzero step sizes,
however, we may be able to estimate what value would be for a step size of zero.

Let A(h) denote value obtained with step size h. If we compute the value of A for some
nonzero step sizes, and if we know the theoretical behaviour of A(h) as h→ 0, then we can
extrapolate from known values to obtain an approximation for A(0). This whole procedure
can be summarized as follows:

Assume A(h) is an approximation of A with a step size h and the error is O(h2),

A(h) = A + a2h2 + a4h4 + (4.27)

– note that A(h = 0) is what we seek. Then we can half the step size and obtain

A(h/2) = A + a2h2/4 + (4.28)

From these two expressions, we can eliminate the h2 term and combine A(h) and A(h/2) to
obtain a better approximation for A,

A =
4A(h/2) − A(h)

3
+O(h4) . (4.29)

The above is often generalized as:

A(h) = a0 + a1 hp +O(hr) (4.30)

(which implies p = 2 and r = 4 for the case above) giving us

A(0) = a0 =
2pA(h/2) − A(h)

2p − 1
+ a′2hr + . . . (4.31)

The point here is that we have reduced the error from order hp in the original approximation
to order hr in the new approximation. If A(h) is known for several values of h, for example
h, h/2, h/4, h/8, . . ., the extrapolation process can be repeated to obtain still more accurate
approximations.

Let us use Richardson extrapolation to improve the accuracy of a finite-difference approx-
imation to derivative of the function sin x at x = 1.

Using the first-order accurate forward difference formula, we have

A(h) = a0 + a1h +O(h2) , (4.32)

so p = 1 and r = 2 in this instance.

Using step sizes of h = 0.5 and h/2 = 0.25, we obtain

A(h) =
sin 1.5 − sin 1

0.5
= 0.312048 , (4.33)

Ouyed & Dobler

4.3. Extrapolation 57

and
A(h/2) =

sin 1.25 − sin 1
0.25

= 0.43005 . (4.34)

The [Richardson] extrapolated value is the given by

A(0) = a0 ≈
2 A(h/2) − A(h)

2 − 1
= 0.548061 . (4.35)

For comparison, the correctly rounded result is given by cos 1 = 0.540302.

Figure 4.6 shows the function A(h) vs h and the steps described above.

Figure 4.6: Richardson Extrapolation for sin x at x = 0.0

Some remarks

• The extrapolated value, though improved, is still only an approximation, not the
exact solution, and its accuracy is still limited by the step size and arithmetic precision
used.

• If F(h) is known for several values of h, then extrapolation process can be repeated
to produce still more accurate approximations, up to limitations imposed by finite-
precision arithmetic.

• Consider the result of a numerical calculation as a function of an adjustable parameter
(usually the step size). The function can then be fitted and evaluated at h = 0 to yield
very accurate results. Press et al. (1992) describe this process as turning lead into
gold. Richardson extrapolation is one of the key ideas used in the popular and
robust Bulirsch–Stoer algorithm for solving ordinary differential equations.

4.3.2 Romberg integration

Continued Richardson extrapolations using the composite trapezoid rule with successively
halved step sizes is called Romberg integration. It is capable of producing very high
accuracy (up to the limit imposed by arithmetic precision) for very smooth integrands.

Ouyed & Dobler

58 IV. I/E

It is often implemented in automatic (though nonadaptive) fashion, with extrapolations
continuing until the change in successive values falls below specified error tolerance.

The error in this approximation has the form∫ b

a
f (x)dx = T(h) + a1h2 + a2h4 + a3h6 + . . . , (4.36)

where T(h) is the approximate value for the integral obtained with the trapezoidal rule
for step size h. Now suppose we computed a sequence of composite trapezoidal approx-
imations at step sizes h0 = h, h1 = h/2, h2 = h/4, denoting these approximations by
T0,0,T1,0,T2,0, . . ., we can extrapolate to get the new sequence of approximations

Tk,1 =
4Tk,0 − Tk−1,0

3
. (4.37)

Extrapolating again we get

Tk,2 =
16Tk,1 − Tk−1,1

15
. (4.38)

The process can be repeated giving

Tk, j =
4 jTk, j−1 − Tk−1, j−1

4 j − 1
, (4.39)

and forming the array of approximations

T0,0

T1,0 T1,1

T2,0 T2,1 T2,2

T3,0 T3,1 T3,2 T3,3

· · · · ·

· · · · · ·

· · · · · · ·

The first column of this array represents the initial trapezoidal approximations, the second
column the first extrapolation, etc. Each approximation in the array is computed from the
approximations immediately to its left and upper left.

Let us illustrate the Romberg method by evaluating∫ π/2

0
sin x dx, (4.40)

If we use the composite trapezoid rule, we have

A(h) = a0 + a1h2 +O(h4) , (4.41)

so p = 2 and r = 4 in this instance.

Ouyed & Dobler

4.3. Extrapolation 59

Figure 4.7: Romberg–Richardson Extrapolation (see Sec. 4.3.2)

With h = π/2, we have

A(h) = A(π/2) = 0.785398 , (4.42)
A(h/2) = A(π/4) = 0.948059 (4.43)

(4.44)

The extrapolated value is then given by

A(0) = a0 ≈
4A(h/2) − A(h)

3
= 1.002280 , (4.45)

which is substantially more accurate than values previously computed (the exact answer
is of course 1). See Fig. 4.7 for an illustration.

A Mathematica algorithm for Romberg integration can be found in § 6.3.2.

4.3.3 Padé extrapolation

A Padé approximation is a rational function, viz. a ratio of two polynomials, which agrees
to the highest possible order with a known polynomial of order M:

f (x) =
M∑

k=0

ckxk
'

∑n
i=0 aixi∑m
i=0 bixi

. (4.46)

One may think of the coefficients ck as representing a power series expansion of any general
function.

In the rational function, one has to set a scale, usually by defining b0 = 0. This leaves m+n+1
unknowns, the coefficients ai and bi, for which it is unproblematic to solve: the expression
is multiplied with the denominator of the rational function, giving on both sides of the

Ouyed & Dobler

60 IV. I/E

equation polynomials containing the unknown coefficients; one equates all terms with the
same power of x to obtain the solution.

Padé approximations are useful for representing unknown functions with possible poles,
i.e. with denominators tending towards zero.

Consider a partial Taylor sum

TN+M(z) =
N+M∑
n=0

anzn , (4.47)

which is a polynomial of degree N+M. Write this in a rational form,

PN
M(z) =

∑N
n=0 Anzn∑M
m=0 Bmzm

, (4.48)

which is called the [N,M] Padé approximant. Here the coefficients are determined from the
Taylor series coefficients as follows:

We set B0 = 1, and determine the N+M+1 coefficients A0,A1, . . .AN and
B1,B2, . . . ,BM by requiring that when the rational function above be expanded
in Taylor series about z = 0 the first N+M+1 coefficients match those of the orig-
inal Taylor expansion.

For example, consider the exponential function

ez = 1 + z +
z2

2
+ . . . (4.49)

The [1, 1] Padé approximant of this is of the form

P1
1(z) =

A0 + A1z
1 + B1z

. (4.50)

Multiplying the equation
A0 + A1z
1 + B1z

= 1 + z +
z2

2
+O(z3) (4.51)

by (1 + B1z), we get

A0 + A1z + 0 z2 = 1 + (B1+1)z +
(
B1+

1
2

)
z2 +O(z3) . (4.52)

Comparing coefficients, we see that

A0 = 1, B1 = −
1
2
, A1 =

1
2
, (4.53)

and thus the [1, 1] Padé is

P1
1(z) =

1 + 1
2z

1 − 1
2z
. (4.54)

Ouyed & Dobler

4.4. Data fitting and smoothing 61

Table 4.2: Comparison of partial Taylor series with successive padé approximants for the exponential func-
tion, evaluated at z = 1. Note that precisely the same data is incorporated in TN+M and in PN

M.

TN+M(1) PN
M(1) Relative error of Padé

T3(1) = 2.667 P1
2(1) = 2.667 -1.9%

T4(1) = 2.708 P2
2(1) = 2.71429 -0.15%

T5(1) = 2.717 P2
3(1) = 2.71875 +0.017%

T6(1) = 2.71806 P3
3(1) = 2.71831 +0.00103%

T7(1) = 2.71825 P3
4(1) = 2.71827957 -0.000083%

How good is this? For example at z = 1,

P1
1(1) = 3 , (4.55)

which is 10% larger than the exact answer e = 2.718281828 . . ., and is not quite as good as
the result obtained from the first 3 terms in the Taylor series,

1 + z +
1
2

z2
∣∣∣∣∣
z=1
= 2.5 , (4.56)

about 8% low.

However in higher orders, Padé approximants rapidly outstrip Taylor approximants as
shown in Table 4.2, where we compare the numerical accuracy of PM

N with TN+M. This
comes at a price, the Padé approximation, being a rational expression, has poles, which
are not present in the original function. Thus, ez is an entire function, while the [1, 1] Padé
approximant of this function has a pole at z = 2.

4.4 Data fitting and smoothing

4.4.1 Least-square fitting

The least-square (LSQ) method computes a set of coefficients to the specified function
that minimize the square of the difference between the original data and the predicting
function. In other words, it minimizes the square of the error between the original data
and the values predicted by the approximation.

Suppose that the data points are (x1, y1), (x2, y2), . . . , (xn, yn). The fitting curve f (x) has the
deviation (error) d from each data point, i.e., d1 = y1− f (x1), d2 = y2− f (x2), . . . , dn = yn− f (xn).
According to the method of least squares, the best fitting curve has the property that:

Slsq = d2
1 + d2

2 + . . . + d2
n =

n∑
i=1

d2
i =

n∑
i=1

[yi − f (xi)]2 = a minimum . (4.57)

Ouyed & Dobler

62 IV. I/E

Linear least-square method

The simplest function to fit is a linear function f (x) = ax+b. By minimizing the square sum
of errors, the unknown parameters a and b (the regression coefficients) can be determined.

Because the least-squares fitting process minimizes the summed square of the residuals,
the coefficients are determined by differentiating Slsq with respect to each parameter, and
setting the result equal to zero. That is,

∂Slsq/∂a = 0 and ∂Slsq/∂b = 0 . (4.58)

The minimization leads to

a =
n

n∑
i=1

xiyi −
n∑

i=1
xi

n∑
i=1

yi

n
n∑

i=1
x2

i −

(
n∑

i=1
xi

)2 (4.59)

and

b =
1
n

 n∑
i=1

yi − a
n∑

i=1

xi

 . (4.60)

As you can see, estimating the coefficients a and b requires only a few simple calculations.
Extending this example to a higher-degree polynomial is straightforward although a bit
tedious. All that is required is an additional normal equation for each linear term added
to the model.

Example

Apply the above to find the equation y = mx+ c of the LSQ line that best fits the following
data

x1 = 5/2, x2 = 3, x3 = 3/2, x4 = 1 , (4.61)
y1 = 2, y2 = 9/2, y3 = 3, y4 = 1. (4.62)

The answer should be m = 6/5 and c = 9/40.

Example

As another example, let us apply the LSQ method to the population growth in the United
States. Table 4.3 lists the total population of the U.S., as determined by the U.S. census, for
the years 1900 to 2000.

Figure 4.8 shows the simple LSQ fit which as you might guess is probably off from the
exact answer (the best estimate for the 2010 population is indicated by a cross). We will
see that cubic spline smoothing does a much better job.

Ouyed & Dobler

4.4. Data fitting and smoothing 63

Table 4.3: Total population of the United States in millions of people.

year millions

1900 75.995
1910 91.972
1920 105.711
1930 123.203
1940 131.669
1950 150.697
1960 179.323
1970 203.212
1980 226.505
1990 249.633
2000 281.422

1900 1950 2000

100

200

300

Year

Figure 4.8: Fit to the U.S. population data. Solid line: LSQ fit. Dashed line: cubic spline interpolation (not a
fit). The cross indicates an estimate for the 2010 population.

Ouyed & Dobler

64 IV. I/E

Non-linear least-square fitting

The linear least-squares method does not only work for fitting a linear functions a0 + a1x,
but rather for any function that is linear in the coefficients a0, a1, Thus, polynomials of
arbitrary orders a0 + a1c + a2x2 + . . . can easily be fitted – all that’s involved is solving a
linear system of equations.

Non-linear least-square fitting, on the other hand, is about fitting functions that are non-
linear in a0, a1, . . ., like e.g. a0ea1x. In this case, a non-linear function needs to be minimized,
and there are no general (fool-proof) methods to find a global (absolute) minimum of an
arbitrary nonlinear function.

We will not go into any details of this method in the present course.

4.4.2 Cubic spline smoothing

In cubic spline smoothing we relax the requirement that the spline pass exactly through the
points and demand only that the spline and its first and second derivatives be continuous.

So continuity still leaves n+3 degrees of freedom. They are determined by balancing two
opposing criteria:

• The spline must come reasonably close to the data.

• The spline must have low curvature.

We use a chi-square (χ2) measure to quantify how close the spline S(xi) comes to the data:

χ2 =

n∑
i=0

[S(xi) − yi]2

σ2
i

. (4.63)

The numerator of each term measures the discrepancy between the spline and the data
point, S(xi)−yi. The denominator provides a weight. The higher the uncertainty σi the
farther we are allowed to miss the data point. If the spline is a good representation of the
data, then deviations are only caused by statistical fluctuations, and the average value of
each term in χ2 is expected to be about one. For reasonably large number of nodes, n, the
value of χ2 is then about n ±

√
n.

To quantify the “curvature”, we integrate the square of the second derivative, giving∫
|S′′(x)|2dx (4.64)

These constraints are contradictory. Notice that to make the “curvature” zero, its smallest
possible value, the spline would have to have zero curvature – i.e., a straight line. But
that would probably give us a high value of χ2. On the other hand, we can make χ2 equal
to zero by having the spline interpolate the points exactly, but that would give a high
curvature.

Ouyed & Dobler

4.5. The χ2 method 65

Putting these two constraints together, we require that the cubic spline minimize

W = ρχ2 +

∫
|S′′(x)|2 dx . (4.65)

The constant ρ determines the trade-off between the two contradictory criteria. Putting
ρ = 0 removes the constraint on χ2 altogether and allows the spline to become a straight
line. Putting ρ very large puts high emphasis on minimizing χ2, forcing the spline to
interpolate without regard to curvature.

Minimizing subject to the continuity requirements leads again to a tridiagonal system that
is easily solved to give the coefficients of the cubics.

Making ρ too small allows for a high value ofχ2. Making it too large forces an unreasonably
small value of χ2. Usually we have to experiment with the choice. The best value results
in χ2 in the range n ±

√
n.

We should consider “smoothing” to be a poor substitute for fitting data to a decent model
function that has a theoretical basis. When we fit experimental data to a model function,
we are actually testing our understanding of nature. When we smooth in order to fit to
an arbitrary cubic spline, we are merely parameterizing an observation, but not learning
something more fundamental.

Let us apply cubic spline smoothing to the population growth in the United States: The task
is to model the population growth and predict the population in the year 2010.

The spline is shown in Fig. 4.8 as a solid line (the dashed line shows the normal cubic
spline) which gives a value of about 312.691 millions. Given the simplicity of the method,

Fitting a
3rd-order poly-
nomial, gives
312.691379
– was ρ used
too large?
(Rachid to
check)

spline smoothing does a remarkably good job.

4.5 The χ2 method

TheΞ2 test is undoubtedly the most important and most used member of the nonparamet-
ric family of statistical tests. TheΞ2 test is employed to test the difference between an actual
sample and another hypothetical or previously established distribution such as that which may
be expected due to chance or probability. Chi Square can also be used to test differences
between two or more actual samples. Is the difference between the samples caused by
chances or by an underlying relationship?.

Null Hypothesis

We will always have a null hypothesis which states

that the observed distribution is not significantly different

from the expected distribution

[and of course use words relevant to that particular problem].

Ouyed & Dobler

66 IV. I/E

The test statistic is2

Ξ2 =
∑ (fexp. − fobs.)2

fexp.
, (4.66)

where fexp. and fobs. are the expected and observed frequencies per category. How to find
these values and work out the problems will hopefully become clear when working the
examples below.

4.5.1 Reduced Ξ2 statistic

What is the reduced chi-square error (Ξ2/ν) and why should it be equal to 1.0 for a good
fit?

The problem with Ξ2 as written is that its value depends on the number of points used!
Simply duplicating all of your data points will most likely double the value of Ξ2 !

• The method of least squares is built on the hypothesis that the optimum description
of a set of data is one which minimizes the weightedsum of squares of deviations,
∆y, between the data, yi, and the fitting function f .

• The sum of squares of deviations is characterized by the Òestimated variance of the
fitÓ, s2, which is an estimate of the variance of the parent distribution, σ2.

• The ratio of s2/σ2can be estimated by Ξ2/ν, where ν = Np1, N is the number of
observations and p is the number of fitting parameters. Ξ2/ν is called the reduced
chi-square statistic.

• If the fitting function accurately predicts the means of the parent distribution, then the
estimated variance, s2, should agree well with the variance of the parent distribution,
σ2, and their ratio should be close to one.

• This explains the origin of the rule of thumb for chi-square fitting that states that a
Ògood fitÓ is achieved when the reduced chi-square equals one.

4.6 Appendix

4.6.1 Newton’s divided differences algorithm

This algorithm requires as input the number of points n in the table and the tabular values
in the x and f (x) arrays. The subroutine then computes the coefficients required in the

2You may be wondering why we want the sum of squares?
There are two ways to answer this: the very simple-minded explanation is that, by using the squares,

you don’t get cancellation between deviations, that would otherwise give you a small deviation in cases
where your model is not really good. Another way o answering this comes from the fact that in many
cases, you assume your distribution of errors to be gaussian, and then the sqared deviation shows itself
in the exponent of the probability distribution function (PDF).

Ouyed & Dobler

4.6. Appendix 67

Newton interpolating polynomial, storing them in the array c :

Newton divided diffs

do j=1,n

c(j) = f(x(j))

enddo

for k=1,n-1

for j=n,k+1,-1

c(j) = (c(j) - c(j-1)) / (x(j) - x(j-k))

end

end

4.6.2 Vandermonde matrix

A Vandermonde matrix of order n is of the form
1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2
...

...
...

. . .
...

1 xn x2
n . . . xn−1

n

 (4.67)

The pattern observed in the columns of the Vandermonde matrix will aid in the construction
of a function that will automatically create this matrix for us:

Vandermonde module
function vandermonde(x0) result(V)

real, dimension(:), intent(in) :: x

real, dimension(size(x),size(x)) :: V

integer :: i, n

do i = 1, n

V(:,i) = x**(n-1)

enddo

endfunction vandermonde

For example run the following and check your output:

Vandermonde sample

program vandermonde_drv

use vandermonde_mod

real, dimension(6) :: xdata

real, dimension(size(xdata),size(xdata)) :: V

integer :: i, j

Ouyed & Dobler

68 IV. I/E

xdata = (/ 10, 20, 30, 40, 50, 60 /)

V = vandermonde(xdata)

do i = 1, size(V,1)

print "(6f12.0)", (V(i,j),j=1,size(V,2))

enddo

endprogram vandermonde_drv

4.6.3 Lab exercise

Using Chebyshev nodes, perform a Lagrange interpolation on the Runge function (f (x) =
1/(1 + x2) in the interval [−5, 5]) with

(i) 6 nodes, and

(ii) 10 nodes.

Compare your results (generate a figure) to what is found when using polynomial inter-
polation with similar number of nodes (see Fig. 4.3).

Ouyed & Dobler

