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Abstract

The simulation of the JLab Mott Polarimeter, constructed using GEANT4, represents the
physical geometry of the polarimeter, and is capable of reproducing results seen in the physical
apparatus. As such, it is a powerful tool with which to describe the polarimeter. In particular we
use the simulation to determine the effect of single Mott scattering and double Mott scattering as
a function of target thickness. These results provide a model driven fit of the effective Sherman
function.

1 JLab Polarimeter and Mott Scattering

The MeV Mott Polarimeter is located in the Continuous Electron Beam Accelerator Facility (CE-
BAF) injector at Jefferson Lab (JLab). It is used to measure the transverse polarization of the
electron beam in the 2 - 10 MeV energy range. The polarimeter measures the elastic scattering
asymmetry of electrons incident on the nuclei of a thin target foil. The foils used include gold,
silver, and copper and range in thickness from 100-10,000 Å. The elastically scattered electrons
pass through aperatures of an aluminum collimator that defines the scattering angle of 172.6◦ ±
0.1◦ with a per quadrant solid angle of 0.18 msr. The scattered electrons pass then pass through the
0.2032 mm (8 mil) thick aluminum window and into the detector packages. Each detector package
contains two plastic scintillators connected to PMTs for readout: a 1 mm × 25.4 mm × 25.4 mm
wafer scintillator, the ∆ E detector, and a cylindrical 76.2 mm diameter, 63.5 mm long scintillator,
the E detector, which functions as a stop detector and calorimeter with a 3% energy resolution.

1.1 Mott Scattering

The polarimeter functions by measuring the Mott scattering asymmetry. Mott scattering describes
elastic electron-nuclear scattering. The differential cross-section can be written as

dσ

dΩ
(θ) = I(θ)

(
1 + S(θ)~P · n̂

)
(1)

where I(θ) is the spin independent form of the Mott cross section, ~P is the incoming beam’s
polarization, S(θ) is known as the Sherman function and

~n =
~p× ~p ′

|~p× ~p ′|
(2)

1



where ~p (~p ′) is the incoming (outgoing) momentum of the electron. In the case of ideal single
scattering we expect to measure an asymmetry,

A =
NL −NR

NL +NR
= PyS(θsc) (3)

where NL(R) is the number of hits in the left(right) detector placed at a scattering angle, θsc.
However, the asymmetry we actually observe depends on target thickness and is averaged over
the acceptance of our detectors. This produces an “effective” Sherman function, Seff (θ, dΩ, d),
where dΩ is the detector acceptance and d is the target thickness. The solid angle is fixed for
the polarimeter and can be dealt with by averaging the Sherman function over the acceptance.
The target thickness dependence is clearly shown in Fig. 1. This target thickness dependence is
suspected to be due to electrons that undergo multiple Mott scatterings within our target. The
goal of the GEANT4 simulation is to see if we can reproduce the effective Sherman function in order
to verify our polarimeter’s accuracy.

Figure 1: Data from the target foils indicating the change of the asymmetry with target thickness.

1.2 Double Mott Scattering

It is our assumption that the target thickness dependence of the Mott scattering asymmetry is
the result of multiply scattered electrons within the target foil. Simulation of this effect requires
us to track the polarization over multiple steps. A Mott scattered electron beam carries a new
polarization.

~P † =

(
~P · ~n+ S(θ)

)
~e1 + U(θ)~e2 + T (θ)~e3

1 + ~P · ~nS(θ)
(4)
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where

~e1 = ~n (5)

~e2 = ~n× ~P (6)

~e3 = ~n×
(
~P × ~n

)
(7)

and U(θ) and T (θ) are functions which measure the spin transfer probability of the scattering. Plots
of the relevant scattering functions for a selection of typical energies can be seen in Fig. 2. Those
plots are generated using the scattering calculations performed by Xavier Roca-Maza, detailed in
[3]. These calculations form the basis of Mott scattering physics in our simulation. One can observe
that the JLab Mott Polarimeter was built at the point where the asymmetry is largest rather than
at the point where the figure of merit (shown in Fig. ??) is maximized.
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Figure 2: Mott cross section, dσ
dΩ , and analyzing power, S(θ), as a function of scattering angle.

2 Simulating Mott Scattering

To begin our simulation, we must generate electrons in our apparatus to represent certain physical
cases. Before we discuss the particular cases the simulation can model in the following sections, we
look at the properties of our “incident beam” of electrons on the target.

In all of the following cases, the electron beam is assumed to have an initial polarization. While
the user may modify this, the standard assumption made is that the beam is 100% polarized in
the positive y direction; ~P1 = ĵ. The incident electrons are assumed to have momentum entirely in
the z direction; ~p1 = pk̂. The beam is assumed to have a circular, Gaussian profile on the target
with a FWHM of 1 mm. All simulations were run with a beam energy of 5.0 MeV and a Gaussian
energy spread of 150 keV.

2.1 Single Scattering: Rejection Method

To look at the detector response to electrons that undergo exactly one Mott scattering process in
the target, we use the following algorithm:

1. Pick a scattering position, ~x1, within the intersection of the beam and our target.
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2. Pick a point, ~x2, in the acceptance the primary collimator.

3. Calculate dσ
dΩ(~x1, ~x2).

4. Rejection sample against this cross-section. If accepted, proceed to generate the event. If
rejected repeat steps 1-3.

In order to measure the Mott asymmetry from single scattering simulations generated in this
manner, we simply use Eq. (3):

εrej.1 =
N rej.
L1
−N rej.

R1

N rej.
L1

+N rej.
R1

= −0.513± 0.0005 (8)

It should be noted that the theoretical single scattering asymmetry is:

εth.1 = −0.514± 0.003 (9)

so we have effectively simulated single Mott scattering. Unfortunately, the results do not change
with target thickness confirming that single scattering is not adequate to explain the measurements
conducted using thick target foils.

2.2 Double Scattering: Rejection Method

Double scattering refers to Mott scattering from exactly two distinct nuclei within the target foil.
The assumption is that this process becomes a more important contribution to the detector signal
as target thickness increases. The first method I’ve used to calculate the effect of double scattering
is a rejection method. The algorithm is:

1. Pick a scattering position, ~x1, within the intersection of the beam and our target.

2. Pick a point, ~x2, within the target, such that |~x2 − ~x1| < 0.16 mm. Beyond this distance in
Gold a 5 MeV electron will lose over 500 keV and no longer be of interest to us.

3. Calculate dσ1
dΩ1

(~x1, ~x2).

4. Pick a point, ~x3, in the acceptance the primary collimator.

5. Calculate dσ2
dΩ2

(~x2, ~x3).

6. Rejection sample against this dσ1
dΩ1

dσ2
dΩ2

. If accepted, generate electron at ~x2 towards ~x3 If
rejected repeat steps 1-5.

Simulating 10 million events at each target foil thickness, this method produces an asymmetry of

εrej.2 =
N rej.
L2
−N rej.

R2

N rej.
L2

+N rej.
R2

= −0.011± 0.003 (10)

Unfortunately this asymmetry also does not scale with target thickness. The path we will follow
from this point on is to see what the relative fraction of the detector signal are come from both
single and double scattering.
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Figure 3: Double scattering information for hits in the left detector. From left to right in the top
row, the initial cross-section, scattering angle, and azimuthal angle. The bottom row contains the
same information for the second scattering.

2.3 Calculating Rates

In order to proceed, we use the simulation results to calculate predicted rates in each detector for
the two processes of intrest. The rate is the simplest quantity with which to compare simulations
to data. The rate calculated from a given simulation is a prediction of the number of events that
will hit our detector per unit current per unit time, using the assumptions in our simulation. All
rates quoted in this note will have units of Hz/µA.

Firstly we will discuss the general method of rate calculation and show how this leads to a form
of the effective Sherman function. The differential rate in our detector from one point in phase
space, ~v, is:

dR(~v) = L(~v)σ(~v)ε(~v)dv, (11)

where L(~v) is the luminosity, σ(~v) is the cross-section of the physics of interest and ε(~v) is the
acceptance function of our detectors (essentially the chance that an event near ~v will be detcted).
The total rate our detector sees from one processes is simply the integral of Eq. (11):

R =

∫
V
dR(~v). (12)

While L(~v) and σ(~v) are often known quantities, ε(~v) is a value obtained solely by simulation.
The numerical solutions of Eq. (12) proposed in the following sections require us to use a

generator that does not weight by cross section as the rejection method in sections 2.1 and 2.2. For
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this purpose a generator was made for each type of event which follows the relevant algorithm but
simply omits the final rejection sampling.

2.4 Data Rates

In order to compare our results to data, we first must have a good understanding of that data.
This section exists to describe the method for determining scattering rates in our detector. Since
the Mott polarimeter’s beam flips polarization direction at a rate of 30 Hz, each detector sees a
combination of each spin state. Additionally, there are known detector efficiency differences between
the four detectors. In order to compare to simulation, data were analyzed so that an average was
constructed from all four detectors looking at events which had a coincidence between the E and
DeltaE detector, and a timing cut to ensure that the electrons were from the target. The results
were fit with a parabola in order to determine linear and quadratic coefficients. The resulting fit
Rdata(d) = adata1 d+ adata2 d2 has coefficients,

adata1 = 0.19± 0.01 Hz/(µA nm), (13)

adata2 = 70± 17 µHz/(µA nm2). (14)

The data from which these were drawn is shown in Table 1.

d (nm) Rdata Rfit
1 Rfit

2

52 9.9±0.1 9.8±0.5 0.19±0.05

215 46.5±0.5 40.3±2.1 3.2±0.8

389 82.6±1.0 73.0±3.7 10.5±2.6

487 97.7±1.0 91.3±4.6 16.5±4.1

561 128.7±1.3 105.2±5.3 21.9±5.4

775 178.3±1.9 145.3±7.4 41.7±10.3

837 209.3±2.2 157.0±8.0 48.7±12.1

944 246.0±2.5 177.0±9.0 61.9±15.3

Table 1: From left to right, the data, linear fit, and quadratic fit portions. Data and fit taken from:
https://wiki.jlab.org/ciswiki/images/e/ef/Rates.pdf. All rates are given in units of Hz/µA.

2.5 Single Scattering Rate: Reimann Integration

For a single scattering event, our phase space vector becomes ~v = (x, y, z, E, χ, ψ) and the volume
element is dv = dxdydzdEdχdψ. The total rate in a detector is then:

R =

∫
V
L(~v)σ(~v)ε(~v) sinχdv. (15)

The integrals over x, y are trivial. Additionally, the dependence of σ(~v) upon z and E are small
enough to ignore in our case. Figure 4 shows plots of the acceptance function,ε(~v), with respect
to the different variables of single scattering. As is demonstrated in the figure, the acceptance
function’s behavior is well characterized solely by it’s dependence upon scattering angle, χ and
azimuthal angle ψ. Thus:

ε(~v) = ε(χ, ψ). (16)
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Using these simplifications we obtain a rate :
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Figure 4: Simulated Acceptance Functions for each of the six degrees of freedom in single scattering. Results
are from the Left detector for 10 million events thrown. Only ε(χ) and ε(ψ) show large dependence.

R =
NAρ

A
NBd

∫ ψmax

ψmin

∫ χmax

χmin

σ(χ, ψ)ε(χ, ψ) sinχdχdψ, (17)

Where NA is Avogadro’s number, ρ is the density of the target foil, A is the atomic weight of the
foil material, NB is the number of electrons per second in 1 µA, and d is the target thickness. In
order to numerically solve Eq. (17) we perform a Reimann sum. We divide the 2D integral into
Nχ ×Nψ bins in χ and ψ of size ∆χ∆ψ. In our case we used 350 bins in each variable. Then Eq.
(17) can be estimated using

R ≈ NAρ

A
NBd

Nχ∑
i=1

Nψ∑
j=1

σijεij sinχi∆χ∆ψ, (18)

Where σij is the average cross-section for all events thrown in the ij’th bin and εij is the acceptance
function for the bin. The uncertainty, δR, from this method is given by

δR2 =

(
NAρ

A
NBd∆χ∆ψ

)2 Nχ∑
i=1

Nψ∑
j=1

(
ε2ijδσ

2
ij + σ2

ijδε
2
ij

)
sin2 χi. (19)
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Figure 5 shows the binned cross-section and acceptance function for a run. Using this method gives
us the results shown in Table 2. These results allow us to make independent predictions of both
the linear coefficient of the rate

asim.1 =
〈
Rsim.1 /d

〉
= 0.198± 0.001 Hz/(µA nm), (20)

where averaging is carried over all eighteen simulated thicknesses. The asymmetry of single scat-
tering is calculated from rates as follows:

εrate1 =

〈
RL1 −RR1

RL1 +RR1

〉
= −0.513± 0.006. (21)

With a similar averaging procedure. These results are in good agreement with data and theory,
respectively.
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Figure 5: On the left: Simulated average cross-section as a function of scattering angle, χ, and azimuthal
angle, ψ, for the left detector. On the right: Simulated acceptance function, ε(χ, ψ). Results from a
simulation of one million events and a 52 nm gold foil.

2.6 Double Scattering Rates

In the case of double scattering, we can’t use the Riemann sum method because the phase space is
significantly more complicated and the summation needs to be carried out over more dimensions.
We turn instead to the idea of Monte Carlo integration using the outputs of the GEANT4 simu-
lation. This method has the advantage of being tractable however, it converges slowly so we must
generate enormous data sets.

To begin, we look at at the differential form of the scattering rate. In this case we consider the
rate by pieces. The rate from the initial scattering at position (x, y, z) and energy (prior to entering
the target), E towards the second scattering position along direction (θ, φ) is given by:

dR1(~v) = L1(x, y, z, E)σ1(z, E, θ, φ) sin θdθdφ, (22)
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d [nm] RL1 [Hz/uA] RR1 [Hz/uA] Rsim.1 [Hz/uA]

52 5.0±0.1 15.5±0.4 10.3±0.2

100 9.6±0.3 29.8±0.8 19.7±0.4

200 19.3±0.5 59.8±1.7 39.5±0.9

215 20.7±0.6 64.2±1.8 42.5±0.9

300 28.9±0.8 89.7±2.5 59.3±1.3

389 37.5±1.0 116.0±3.2 76.7±1.7

400 38.5±1.1 119.7±3.3 79.1±1.7

487 46.9±1.3 145.5±4.0 96.2±2.1

500 48.2±1.3 149.2±4.2 98.7±2.2

561 54.0±1.5 167.4±4.7 110.7±2.4

600 57.8±1.6 179.2±5.0 118.5±2.6

700 67.4±1.9 209.3±5.8 138.3±3.1

775 74.7±2.1 231.4±6.4 153.0±3.4

800 77.1±2.1 239.2±6.6 158.1±3.5

837 80.6±2.2 249.8±6.9 165.2±3.7

900 86.6±2.4 269.0±7.5 177.8±3.9

944 91.0±2.5 282.2±7.8 186.6±4.1

1000 96.3±2.7 299.5±8.3 197.9±4.4

Table 2: Rates calculated from single scattering simulations of 108 thrown events. From left to right: Rate
in left detector, rate in right detector, average of the two.

with the luminosity in an infinitesimal volume about the first scattering vertex given by:

L1(~v) =
NAρ

A

NB

(2π)3/2σxσyσE
exp

[
− x2

2σ2
x

− y2

2σ2
y

− E2

2σ2
E

]
dxdydzdE. (23)

Similarly the infinitesimal rate our detector sees from the second scattering vertex, a distance, ξ,
from the first scattering, towards our detectors at global scattering angle (χ, ψ) is:

dR(~v) = L2(x, y, z, E, θ, φ, ξ)σ2(z, E, ξ, θ, φ, χ, ψ)ε(χ, ψ) sinχdχdψ. (24)

The luminosity in this case is

L2(x, y, z, E, θ, φ, ξ) =
NAρ

A
dR1(~v) exp(−ξ/λ)dξ. (25)

where λ is a characterization of to what depth an electron will penetrate in gold. Calculated in the
following manner,

1

λ
= 2π

NAρ

A

∫ π

π/2
σ(E, θ) sin θdθ, (26)

we find
λ = 183 µm. (27)

Since λ � d we can safely ignore this term in the single scattering case. Additionally, testing has
shown that this term has no effect on the resulting rate calculation due to the foil’s geometry (only
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a sliver of events scattered at ≈ π/2 are ever going to have an appreciable amount of foil to travel
through) but we include it for completeness’ sake. We define

f(~v) = exp

[
− x2

2σ2
x

− y2

2σ2
y

− E2

2σ2
E

]
exp(−ξ/λ)σ1(~v)σ2(~v)ε(χ, ψ) sin θ sinχ, (28)

Which allows us to write our rate integral as:

R =

(
NAρ

A

)2 NB

(2π)3/2σxσyσE

∫
V
f(x, y, z, E, θ, φ, ξ, χ, ψ)dv (29)

The GEANT4 simulation samples the double scattering phase space, V , according to the probability
density function

g(~v) = C exp

[
− x2

2σ2
x

− y2

2σ2
y

− E2

2σ2
E

]
sin θ sinχ, (30)

uniformly sampling all non-explicit variables, with the normalization condition,

1

C
=

∫
V
g(x, y, E, θ, χ)dv. (31)

The integrations over x, y, E, φ, ξ, χ, and ψ can be performed trivially, leaving:

1

C
= (2π)3/2σxσyσE

2π2

9

(
cos

π

36
− cos

π

18

)
× I, (32)

where we define

I =

∫ d

0

∫ π

0
ξmax(θ, z) sin θdθdz. (33)

In the above equation, ξmax(θ, z) is the maximum distance between the two scattering vertices
can be generated given the initial scattering position and angle. Since the simulation constrains
generated electrons to not lose more than 500 keV in the target (these would not be counted in our
physical asymmetry in any case), we put a distance limit, D = 157µm, for those particles travelling
at θ ≈ π/2. Thus we define:

ξmax(θ, z) =

{
d−z
cos θ

[
1−H

(
d−z
cos θ −D

)]
+DH

(
d−z
cos θ −D

)
if θ ≤ π/2

−z
cos θ

[
1−H

( −z
cos θ −D

)]
+DH

( −z
cos θ −D

)
if θ > π/2,

(34)

where H(x) is the Heaviside step function. The integral in Eq. (33) is covered in Appendix A
where it is found that I = d2. Thus Eq. 32 becomes

1

C
= (2π)3/2σxσyσE

2π2

9

(
cos

π

36
− cos

π

18

)
d2. (35)

Given the definitions above, we can calculate the rate from double scattering

R =

(
NAρ

A

)2 NB

(2π)3/2σxσyσE

∫
V

f(~v)

g(~v)
g(~v)dv (36)
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Using the Reimann sum method is not available to us due to the high dimension of the integral
and the difficulty of the integration limits We use a Monte Carlo Estimator as described in [1]:

R =
1

n

(
NAρ

A

)2 NB

(2π)3/2σxσyσE

n∑
i

f(~vi)

g(~vi)
(37)

=
1

C

1

n

(
NAρ

A

)2 NB

(2π)3/2σxσyσE

n∑
i

σ1(~vi)σ2(~vi)ε(χi, ψi) (38)

=
2π2

9

(
cos

π

36
− cos

π

18

)
NB

(
NAρd

A

)2 1

n

n∑
i

σ1(~vi)σ2(~vi)ε(χi, ψi) (39)

Results of this method are shown in Table 3. We compare the simulated coefficient for quadratic
rate scaling:

asim.2 =
〈
Rsim.2 /d2

〉
= 62± 15 µHz/(µA nm2), (40)

to the result from data in Eq. (14) and find them compatible. However constructing a double
scattering asymmetry analagous to Eq. (21) proves problematic. While there is no clear thickness
dependence, there is significant variance from point to point which can be seen in Figure 6. We
calculate:

εrate2 =

〈
RL2 −RR2

RL2 +RR2

〉
= 0.28± 0.11. (41)

This result is not consistent with the results of the rejection method in 2.2 which is somewhat
puzzling and requires further investigation.

Figure 6: Asymmetry as calculated in Eq. (41) from results of 2.5 × 108 event simulation at each
target thickness.

3 Combined Results

With the rates in both left and right detectors for single and double scattering, we can perform
comparisons directly to data. The simulation calculates a combined rate of

Rsim.tot. =
1

2
[RL1 +RR1 +RL2 +RR2 ] . (42)
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d [nm] RL2 [Hz/uA] RR2 [Hz/uA] Rsim.2 [Hz/uA]

52 0.22±0.02 0.12±0.02 0.17±0.01

100 0.78±0.09 0.36±0.05 0.57±0.05

200 2.92±0.32 1.74±0.23 2.33±0.20

215 3.79±0.48 2.68±0.73 3.24±0.44

300 8.21±0.97 3.59±0.47 5.90±0.54

389 12.94±1.70 5.58±0.78 9.26±0.93

400 11.25±1.37 10.33±1.83 10.79±1.14

487 20.46±3.09 8.79±1.64 14.63±1.75

500 16.64±1.82 10.82±1.57 13.73±1.20

561 29.69±4.17 11.47±1.83 20.58±2.28

600 28.60±4.33 21.27±3.71 24.94±2.85

700 43.84±4.90 26.69±5.93 35.26±3.85

775 40.56±5.58 22.95±3.63 31.76±3.33

800 67.56±8.87 25.98±4.54 46.77±4.98

837 49.58±6.34 31.81±4.86 40.69±4.00

900 67.97±8.44 37.97±7.92 52.97±5.79

944 77.47±10.19 37.28±6.63 57.37±6.08

1000 76.53±9.86 49.38±8.53 62.95±6.52

Table 3: Rates calculated from double-scattering simulations of 2.5× 108 thrown events. From left to right:
Rate in left detector, rate in right detector, average of the two.

The results of Eq. (42) can be seen compared to data in Table 4.

d[nm] Rdata[Hz/µA] Rsim
tot.[Hz/µA]

52 9.93±0.09 10.45±0.23

215 46.50±0.48 45.69±1.03

389 82.58±1.04 85.98±1.94

487 97.74±1.00 110.82±2.75

561 128.66±1.32 131.31±3.34

775 178.30±1.86 184.76±4.75

837 209.30±2.15 205.90±5.41

944 246.00±2.53 243.98±7.34

Table 4: Data rates compared to combined simulation rates.

A combined asymmetry can be constructed in a similar way:

Asim. =
[RL1 −RR1 ] + [RL2 −RR2 ]

[RL1 +RR1 ] + [RL2 +RR2 ]
, (43)

allowing direct comparison with data as in Table 5.
However, the simulation also indicates, without reference to our experimental data, that the

single scattering rates scale linearly with thickness and have a thickness-independent asymmetry.
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d [nm] Adata [%] Asim. [%]

52 43.26±0.11 43.0±2.2

215 40.97±0.07 39.9±2.2

389 39.18±0.08 35.6±2.1

487 38.56±0.08 33.8±2.3

561 37.21±0.08 31.2±2.4

775 35.61±0.08 32.4±2.4

837 34.59±0.08 31.6±2.4

944 33.77±0.08 26.6±2.7

Table 5: Asymmetry measured on the target foils compared to combined simulation asymmetry calculated
according to Eq. 43.
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Figure 7: On the left: Combined simulation asymmetries (blue) compared to data (red). On the right, the
relative difference between the two given by (adata −Asim.(d))/δAsim.(d).

Likewise, the double scattering rates scale quadratically while also having a thickness-independent
asymmetry. That is to say that we can make the following well founded assumptions:

RL1(d) = asim.1 d(1 + Pε1) RR1(d) = asim.1 d(1− Pε1)

RL2(d) = asim.2 d2(1 + Pε2) RR2(d) = asim.2 d2(1− Pε2)

Which, when inserted into Eqs. (42 - 43), lead to analytic predictions (based solely on simulation
outputs) for the rate

Rpred.(d) = a1d+ a2d
2 (44)

and the asymmetry (which does rely on knowledge of P )

Apred.(d) = P
a1ε1 + a2ε2d

a1 + a2d
(45)
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respectively. Thus we have a prediction for the effective Sherman function using only simulation
derived values:

Spred.eff (d) =
a1ε1 + a2ε2d

a1 + a2d
. (46)

Additional details can be seen in Figure 8.
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Figure 8: On the left: Combined simulation rates (blue) compared to data rates (red). The black curve is
the analytic simulation prediction from Eq. 44. On the right, the relative difference between the two given
by (Rdata −Rpred.(d))/δRpred.(d) incorporating the uncertainty of the measured target thickness.

4 Conclusions

The Mott GEANT4 simulation has lead to a theory driven prediction for the form of the effective
Sherman function. However, some investigation is required in order to resolve the apparent dis-
crepancy between εrej.2 and εrate2 . This form of the effective Sherman function also indicates a new,
theory based, fitting formula for extrapolation from finite target thickness to zero:

Afit(d) =
A0 + αd

1 + βd
. (47)

We can compare this fit to the simulation predictions using:

A0 = Pε1 (48)

α = Pa2ε2/a1 (49)

β = a2/a1 (50)

(51)

The results of this fit can be seen next compared to the simulation based prediction in Figure 9.
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Figure 9: Left: Combined simulation asymmetries (blue) compared to data rates (red). The black curve is
the analytic simulation prediction from Eq. 44 using εrate2 = 0.28± 0.11. The red curve is a fit using Eq. 47.
Right: Data (red) is matched to the prediction from Eq. 44 using εrej2 = 0.011± 0.003.
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Appendix A: Normalization Integral

Herein we perform the explicit integration of Eq. (33):

I =

∫ d

0

∫ π

0
ξmax(θ, z) sin θdθdz. (52)

Examining the integral over θ we see∫ π

0
ξmax(θ, z) sin θdθ = (d− z)

∫ α1

0
tan θdθ +D

∫ α2

α1

sin θdθ + (−z)
∫ π

α2

tan θdθ, (53)

where cosα1 = (d− z)/D with 0 ≤ α1 < π/2 and cosα2 = −z/D with π/2 ≤ α2 < π. We then see:

(d− z)
∫ α1

0
tan θdθ = −(d− z) log(

d− z
D

), (54)

D

∫ α2

α1

sin θdθ = d, (55)

−z
∫ π

α2

tan θdθ = z log(
z

D
), (56)

∴
∫ π

0
ξmax(θ, z) sin θdθ = d

[
1− log(

d− z
D

)

]
+ z

[
log(

d− z
D

) + log(
z

D
)

]
. (57)

Therefore we see

I =

∫ d

0

(
d

[
1− log(

d− z
D

)

]
+ z

[
log(

d− z
D

) + log(
z

D
)

])
dz (58)

= d2 (59)

regardless of our initial choice of D (so long as it is a physically possible value).
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Appendix B: Error Propagation

From Eq. (44) we obtain an uncertainty:

(δRpred.)2 = d2δa1
2 + d4δa2

2 + (a1 + a2d)2δd2. (60)

From Eq. (45) we obtain an uncertainty:

(δApred.)2 = (δApred.)2δP 2+ (61)
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