

Semi-inclusive and Exclusive π^0 Electroproduction Physics with NPS

<u>Joshua P. Crafts</u>, Avnish Singh

The Catholic University of America

Presented to the 2025 Hall C Winter Collaboration Meeting On behalf of the NPS Collaboration Jan 13th, 2025

Supported by NSF grant PHY2309976

2025 Hall C Winter Collaboration Meeting

Outline

\Box π^0 Physics

- TMD Background
- Validation of Factorization theorem
- E12-13-007, E12-23-014, and E12-13-010 in Hall C
- \Box π^0 in parallel with DVCS
 - \circ NPS experiment setup as it relates to the π^0
- NPS RG-1a analysis plan
 - Current Status
 - RG-1a kinematic coverage
- Current status of the π^0 with the NPS
 - \circ $\,$ Initial missing mass observation
 - Heading towards L/T seperation of exclusive π^0
- Next Steps

E12-13-007: Basic (e,e' π^o) cross sections

Linked to framework of Transverse Momentum Dependent Parton Distributions

- Basic cross sections are a fundamental test of understanding SIDIS in 12 GeV kinematics and essential for most future experiments and their interpretation
- Validation of factorization theorem.
- Target-mass corrections and ln(1-z) resummations require precision large-z data
- Transverse momentum widths of quarks with different flavor (and polarization) can be different

- □ Advantages of (e,e' π°) beyond (e,e' $\pi^{+/-}$)
 - Experimental and theoretical advantages to validate understanding of SIDIS
 - > Can verify: $\sigma^{\pi^{o}}(x,z) = \frac{1}{2} (\sigma^{\pi^{+}}(x,z) + \sigma^{\pi^{-}}(x,z))$

 $\sigma = \sum e_q^2 f(x) \otimes D(z)$

> Confirms understanding of flavor decomposition/k_T dependence

E12-13-007 goal: Measure the basic SIDIS cross sections of π° production off the proton, including a map of the P_T dependence (P_T ~ Λ < 0.5 GeV), to validate flavor decomposition and the k_T dependence of (unpolarized) up and down quarks

Physics Considerations

Low-energy (x,z) factorization, or possible convolution in terms of quark distribution and fragmentation functions, at JLab-12 GeV must be well validated to substantiate the SIDIS science output

 Many questions at intermediate-large z (~0.2-1) and low-intermediate Q2 (~2-10 GeV2) remain

Advantages of (e,e' π^0) beyond (e,e' $\pi^{+/-}$)?

(e,e'π⁰):

No diffractive ρ contributions

- No exclusive pole contributions
- Reduced resonance contributions
- Proportional to average D

2025 Hall C Winter Collaboration Meeting

1/13/2025

Non-trivial contributions to (e,e' π^+) Cross Sections:

E12-13-007 & E12-23-014 goal: basic SIDIS cross sections, validate SIDIS framework at JLab energies

E12-23-014: R = σ_1 / σ_T , p/d ratios, P_h dependence, and azimuthal asymmetries with π^0 SIDIS \Box Measure $R_{1T} = \sigma_1 / \sigma_T$, the ratios of d/u cross sections, the transverse momentum dependence of the cross section, and the spin-independent and beam-spin-dependant

Data taken on both Hydrogen and Deuterium 0 targets to allow for precision ratio of proton to deuteron

- □ Physics goals are driven by the need to more fully understand the production processes that enter SIDIS for better understanding of the 3D nucleon structure
 - Dynamic and target higher twist, deep-exclusive processes, VM, CSV

modulations of the cross section

Projections for R_{IT} SIDIS as a function of p_T and z

Angles for which NPS has good acceptance in (z,p_{τ})

Early Insights into Exclusive π^0 and Factorization

2025 Hall C Winter Collaboration Meeting

- - L/T-separated π^0 cross sections measured at Hall A, covering 1.5 < Q² < 2 and x_B = 0.36.
 - VGG model (short dashed lines) predicts a small longitudinal cross-section, matching data
 - Models with chiral-odd GPD and twist-3 PDAs also in good agreement for both L/T.
 - Indicates potential access to transversity GPDs of the nucleon through exclusive π^0 electroproduction for Q² ≥ 1.5 GeV².

E12-13-010 goal: Perform an L/T separation of the exclusive π^0 electroproduction cross section as a function of Q².

The cross sections extracted at low ϵ are shown in open symbols and high ϵ in solid symbols

Higher transverse contribution; transversity GPD models agree well with data. Suggests pQCD regime isn't reached

"M. Defurne et al, PRL 117 (2016) no.26, 262001"

E12-13-010 Exclusive π^0 Electroproduction with NPS in Hall C

- An extension and compliment to the kinematic settings examined in Hall A
 - Increased the Q^2 reach to even higher values at fixed x_B
 - Also Expanded the kinematic coverage to smaller values of x_B
 - $\circ~$ E12-13-010 also provides data on σ_L and σ_T at higher Q² for reliable interpretation of 12 GeV GPD data
- □ Motivation for π^0 electroproduction towards GPDs:
 - Sensitive to transversity GPDs ([~]H_q, [~]E_q), which are less accessible in vector meson production.
 - Offers insights into parton helicity flipping (chiral-odd GPDs).
 - No need for polarized targets or beams to access these polarized distributions.

2025 Hall C Winter Collaboration Meeting 1/13/2025

π^0 Exclusive Cross Sections

- Relative L/T contribution to π⁰ cross section important in probing transversity
- Results from Hall A at 6 GeV Jlab suggest that the longitudinal cross section in π^0 production is non-zero up to $Q^2=2 \text{ GeV}^2$ 12 GeV projections: confirm Q^2/t

dependence

.

7

Semi-inclusive and Exclusive π^0 with NPS in Hall C

- □ These experiments were part of the NPS RG1-a and detected in coincidence scattered electrons in the existing HMS and photons from the decay of the π^0 using the Neutral Particle Spectrometer (NPS)
- □ The NPS detected photons corresponding to π^0 electroproduction close to the direction of \vec{q} , the exchanged virtual photon threemomentum transfer
 - \circ Average lifetime of 8.5×10⁻¹⁷ seconds.
 - The HMS Spectrometer benefits from relatively small point-to-point uncertainties, which are crucial for meaningful L/T separations

2025 Hall C Winter Collaboration Meeting

Analysis Game Plan

- The overall analysis for the NPS RG-1a is in progress with the Pass-1 having been run over the Holiday break.
- Initial calibrations of the HMS subdetectors and beamline components have been finalized.
 - HMS Optics Calibration
 - Beam Charge Measurements
 - Coincidence Timing Corrections
- These calibrations are being done to maximize the acceptance of the overall experimental apparatus
- □ Next steps will include waveform analysis and further refinements of the NPS detector Calibrations along with the π^0 analysis
- □ The π^0 is also providing useful information for calibration of the NPS detector itself
 - Supplemental to the elastic calibration. $\pi^0 \rightarrow \gamma \gamma$ Calibration
- Stay tuned for more details!

9

π^0 Missing Mass

- Example of the π⁰ missing mass statistics from different kinematics from the Pass-1 data analysis
 - Two cryogenic targets were used (LD₂ and LH₂) along with a dummy/ empty Al target for background subtractions
- The colored curves represent the SIMC predictions for exclusive, Delta ,and Sidis (solid black curve is the sum) and the open circles are the measured data
- NPS Fiducial cuts were applied to both SIMC and data

HMS Beta Value Stability in Pass1

Extracted HMS Beta during the RG1-a run period Refinement in the HMS calibrations, PID cuts, timing corrections, etc. showed

corrections, etc. showed good improvement over the values used for online running

- Both Pass-0 (online analysis) and Pass-1 replay shown for comparison
- Beta values are consistent across the experiment and the values were improved ~80% with the Pass-1 calibrations applied

Credit: Avnish S. 11

2025 Hall C Winter Collaboration Meeting

Next Steps

- □ After the initial replay of the data with the pass-1 calibrations verified, the next steps will be to refine the code used to reconstruct the 4-vector of the candidate π^0 decays
 - Using two photon hits detected in the NPS over all the kinematics and select good events
 - Refining the selection criteria and comparing to simulated acceptance of the NPS detector to determine efficiencies (comparing probabilities of edge case events clustering)
- Once the good events are selected, full analysis of the kinematic bins will continue
 - Accumulate the $\pi^0 \rightarrow \gamma \gamma$ accidental-subtracted invariant mass spectra in bins of x, e- π^0 missing mass, helicity and transverse momentum, etc.
 - Also since RG-1a ran on two different targets we can also compare the output from the LD2 vs LH2 targets

2025 Hall C Winter Collaboration Meeting

1/13/2025

(e,e'π⁰) with NPS E12-13-007

 $\phi = 90^{\circ}$

φ = 270°

Summary

2025 Hall C Winter Collaboration Meeting

- Hall C E12-13-007, E12-23-014, and E12-13-010 give probes for TMDs and will allow for a L/T separation measurement across a large kinematic range
 - Also can show validation of Low-energy (x,z) factorization
- □ The NPS RG-1a experiments (2023-2024) ran in Hall C at JLab using the NPS detector in combination with the HMS spectrometer to detect photons corresponding to π^0 electroproduction
- There was good coverage of the desired kinematic range in X_b and Q² despite the challenges which were overcome
- HMS subdetector calibrations have been finalized with Pass-1 replay complete, analysis is in progress
- □ The π^0 missing mass peak has been preliminarily identified from online running analysis and is being refined in Pass-1
- \Box π^0 reconstruction ongoing

2025 Hall C Winter Collaboration Meeting

Thank you to the NPS Collaboration Thanks to all my colleagues at JLab and elsewhere Thank you all for your time

