

March 24th - March 28th 2025

The Neutral Particle Spectrometer (NPS) at JLab : RG-1a

Mongi Dlamini, on behalf of the NPS collaboration

NPS Collaboration and Sponsors

Talented graduate students (alphabetical order):

J. Crafts (CUA) W. Hamdi (U. of Tunisia) H. Huang (U. Paris-Saclay) M. Keryer (ODU) M. Mathison (Ohio U) C. Ploen (ODU) A. Singh (CUA) T.H Song (Kyungpook Nat. U.) Y. Zhang (Tsinghua U.)

Hall C and the Neutral Particle Spectrometer

• HALL C:

- Is for precision measurements
- High luminosity ~ 8 x 10³⁷/(cm²s)
- Small angle, precision cross-sections, L/T separation

• NPS:

- Electromagnetic calorimeter installed on SHMS rail in Hall C
- NPS designed for precision cross-section measurements of neutral particles (π^0 and y) in coincidence with the well understood HMS infrastructure
- Angular range (production): 9.0 20.6 degrees

Targets:

- LH2
- LD2

HMS:

- Detection of scattered e⁻ (or proton during NPS calibration)
- Excellent momentum resolution ~0.1%
- Wide momentum range: 0.5 7.5 GeV/c

Performance of The Neutral Particle Spectrometer

- NPS is a new instrument at JLab Hall C built with support from NSF MRI PHY1530874
- The NPS calorimeter consists of 1080 PbWO4 crystals, the preferred material for high-resolution calorimetry, also at EIC NPS has the largest set of PbWO4 crystals in an operating calorimeter in the US
- The NPS Science Program consists of ten approved experiments
 - **4** experiments have been running in parallel from Sept 2023 to May 2024 (training 12 grad/undergrad students)

All channels perform well at very high luminosity on LH2 and LD2($\approx 8x10^{37}$ cm²/s).

The expected resolution energy resolution was achieved (1.3% at 7.3 GeV).

Small Angle Program of NPS : September 2023 – May 2024 (RG-1a)

- Deeply Virtual Compton Scattering (DVCS) off the proton
- > DVCS off the neutron
- > Deeply Virtual Meson Production (DVMP) with π^0
- $\,$ > Semi-Inclusive Deep Inelastic Scattering (SIDIS) with $\pi^{\!_{0}}$

E12-13-010: DVCS/DVMP & Nucleon Structure

- DVCS Cross-Sections
- E12-13-010 DVCS measurements complementary to DVCS in Hall A - extension of phase space
- Scaling of Compton Form Factor
- Measurement at different beam energies for Rosenbluth separation of DVCS cross-section:
 - $\sigma(ep \rightarrow epy) = |BH|^2 + Re[DVCS^{\dagger}BH] + |DVCS|^2$

E12-13-010/E12-22-006: DVCS/DVMP & Nucleon Structure

- π^0 Exclusive Cross-Sections:
- 6 GeV results from Hall A suggest a non-zero σ_T up to Q²~2GeV² => perturbative QCD regime hasn't been reached
- L/T contribution to π^0 cross-section important to access transversity GPDs
- Need to also test 12 GeV projections which confirm the $Q^2 \sigma_{\text{T}}$ dependence

- DVCS off the Neutron:
- To probe flavor dependence of GPDs with precision DVCS off the neutron measurements by using an LD₂ target
- Azimuthal, beam, and helicity dependence of cross-section
- Improved separation of nDVCS and dDVCS

E12-13-007: SIDIS Basic (e,e', π^0) cross sections

- SIDIS cross sections depend on the transverse momentum of the hadron, hence linked to the Transverse Momentum Dependent Parton Distributions framework
- Arises from intrinsic transverse momentum of struck parton (k_t) and the transverse momentum (P_t) of fragmentation process
- π^{0} 's are a good test for validation of factorization theorem

E12-13-007 goal: Measure SIDIS cross sections of π^0 production the proton & Map P_T dependence to validate flavor decomposition and the K_T dependence of up and down quarks.

Why π^0 channel instead of $\pi^{+/-}$?:

- No diffractive ρ and pole contributions
- Reduced resonance contributions
- Proportional to fragmentation function D

HMS Optics Reconstruction

 For high HMS momentum (>5.6 GeV) we need to accurately reconstruct position variables at the target from the focal plane variables: (x_{fp},x'_{fp},y_{fp},y'_{fp}) → (x'_{targ},y_{targ},y'_{targ})

Credit: C. Ploen

NPS Elastic Calibrations

Coefficients of elastic calibration #3

- HMS polarity switch to detect elastic protons
- NPS detects electrons NPS sweep magnet off
- 3 NPS to cover the whole calorimeter at calibration
- PMT High Voltages adjusted based on coefficients obtained via χ^2 minimization

- 16 elastic calibrations performed
- Uniform in each PMT is important for better trigger on DVCS
- Elastic data also useful for optimizing waveforms ... see waveform analysis slide

NPS Calibrations with π^0 Mass Measurement

Credit: H. Huang

Preliminary Waveform Analysis

Preliminary Exclusivity Results - DVCS

- DVCS events extracted from missing mass technique:
 - $M_{x}^{2} = (k+P-k'-q_{y})^{2}$
- Subtraction of contamination : π^0 and accidentals makes DVCS signal cleaner

Credit: W. Hamdi

Preliminary Exclusivity Results - π^0

Credit: W. Hamdi

Preliminary π⁰ Missing Mass – All Channels Preliminary Exclusivity Results - π⁰

- Sample π^0 missing mass statistics from 3 of 56 kinematics from the Pass-1 data analysis
- LH2, LD2, and dummy target
- Colored curves represent SIMC predictions with black curve representing the SIMC sum
- NPS Fiducial cuts were applied to both SIMC and data

Credit: P. Bosted

Run Period Challenges – Radiation Damage of Preamplifiers

Mean Values : Sample Pulse Amplitude

Problem:

- Calorimeter channels became unstable and failed, especially starting with those closest to the beam
- Radiation damage in LV regulators on the preamplifier bases led to unstable LV power supply for the whole column

• Solutions:

- Columns were disabled as they became unstable
- Bypassed the regulators in the pre-amps to refurbish the bases

Run Period Challenges - Problems with LH2 Target

- Validation of luminosity and HMS acceptance using the analysis of DIS yield shows huge discrepancy between simulation and data for LH2 target
 - Hypotheses:
- Unusual fan speed created bubbles?
- Helium (coolant) contamination

Interventions:

- Fan speed adjusted (from 58Hz to 42Hz)
- Replaced fan cooler
- Moved LH2 from loop 2 to loop 3
- Increased pressure in target loop (from 25psia to 40 psia)

Simulations in development to help pin down and correct for the discrepancy in LH2 yield

Conclusion:

- NPS RG-1a experiments (September 2023 May 2024) ran in Hall C of Jlab using NPS detector in coincidence with the hall's HMS to detect photons corresponding to both DVCS and π^0 electroproduction
- 16 elastic calibrations were performed and further calibration using π^0 measurement still ongoing
- Preliminary exclusive (missing mass) peaks have been extracted
- Currently starting to perform waveform fitting on the overall data
- NPS will return to the floor in future for more data and more experiments on studying nucleon structure

Thank you for your attention !!

THANK YOU – THANK YOU – THANK YOU

DVCS off the Neutron : Recent Work

- To probe flavor dependence of GPDs with precision DVCS off the neutron measurements by using an LD₂ target
- Azimuthal, beam, and helicity dependence of cross-section
- Improved separation of nDVCS and dDVCS

M. Benali et. al. Nature Phys. 16 (2020)