Electrons for Neutrinos

Julia Tena Vidal at Tel Aviv University on behalf of the e4nu and CLAS collaborations

Introduction

• Global effort to improve lepton-nucleus scattering models for oscillation experiments

• Unprecedented accuracy in cross section models required by next generation neutrino oscillation experiments

Electrons for neutrinos

- Monochromatic incident energy
 - Can choose kinematics focus on specific reaction mechanisms
- High statistics
- Similar interactions with nuclei
 - CC weak current [vector + axial]

•
$$j_{\mu}^{\pm} = \overline{u} \frac{-ig_W}{2\sqrt{2}} (\gamma^{\mu} - \gamma^{\mu}\gamma^5) u$$

- EM current [vector]
 - $j^{em}_{\mu} = \overline{u} \gamma^{\mu} u$

Almost identical nuclear physics

High quality constrains for neutrino event generators

GENIE http://tunes.genie-mc.org

- ν -A, l^{\pm} -A and h-A event generator
 - MeV to PeV, all flavours and targets
- Originally developed for neutrinos
- Full description for electrons
 - Only event generator in the market with all EM processes
 - Variety of models available
 - More comprehensive models to come

Nuclear model Final Sate Interactions (FSI) Quasielastic (QEL) 2p2h (MEC) Resonance (RES) Deep Inelastic (DIS) LFG/RFG/CFG/SF hA/hN/INCL++/G4 (*) Identical for v-codes Rosenbluth/SuSAv2 Empirical/SuSAv2 Berger-Sehgal Bodeck-Yang

Inclusive measurements

- Most electron-scattering measurements are inclusive
- Exclusive measurements are limited to specific kinematics
- Lacking precise hadron production measurements

Hadron production with CLAS6

- Large acceptance @ $\theta_e > 15^\circ$
- ~50% of " 4π " coverage
- Charged particle threshold comparable to neutrino tracking detectors
 - 300 MeV/c for p and γ
 - 150 MeV/c for π^{\pm}
 - Magnetic field disentangles charge
- Beam energies of interest for ν :
 - 1.1, 2.2 & 4.4 GeV
- Targets ⁴He, C & Fe

The CLAS12 detector

- Maximal luminosity: $10^{35} cm^{-2} s^{-1}$
 - 10 times larger than CLAS6
- Large acceptance ($\sim 4\pi$)
 - Improved acceptance @ $\theta_e > 5^\circ$
- Detection thresholds:
 - 400 MeV/c for p and n
 - 200 MeV/c for π^{\pm}
 - 300 MeV/c for γ
 - Can detect neutrons
- Open trigger
- Magnetic field

Acquired data:

- Energies: 2, 4, 6 GeV
- **Targets:** H, D, 4He, ¹²C, 4•Ar and more

https://doi.org/10.1016/j.nima.2020.163419

Inclusive (e,e') at multiple angles and targets

²H at 6GeV

Matan Goldenberg

Inclusive (e,e') at multiple angles and targets

Energy transfer [GeV]

2.2

0.5

2

1.8

1.6

4

0.2

0.6

0.4

0.8

.2

Energy transfer [GeV]

Inclusive (e,e') at multiple angles and targets

10

4

3.5

3

2.5

2

Energy transfer [GeV]

1.5

Pion production dominated era

DUNE will be dominated by pion production events

Exclusive data crucial to validate and improve models

Pion production

• First e4nu electron-scattering pion production analysis: $1p1\pi^{-}$ and $1p1\pi^{+}$

with no detected γ any number of neutrons

- 1, 2 and 4 GeV e2a CLAS6 data
- ¹²C (4He and ⁵⁶Fe to come)
- $1p1\pi^-$: possible at the free nucleon level
- $1p1\pi^+$: needs two or more nucleons \rightarrow undetected particles (FSI!)

Pion production analysis with CLAS6 Background contamination

- Particles below threshold
 - p_p and $p_{\gamma} > 300 MeV$
 - $p_{\pi^{\pm}} > 300 \, MeV$

- $\theta_p > 12 deg$
- $\theta_{\gamma} > 8 deg$
- $\theta_{\pi^{\pm}} > 12 \deg$
- Data not corrected for this
- Same cuts applied to simulation

$1p1\pi^{\pm}$ analysis: background contamination

- Not full " 4π " coverage
 - Gaps between the sectors
 - Gaps within a sector
 - "Data driven"
 background subtraction

$1p1\pi^{\pm}$ analysis: background contamination

- "Data driven" background subtraction
 - Rotate detected background event N times around \vec{q}
 - Compute probability to be detected as signal (P_{signal})
 - Add pseudo-event weighted by Psignal
 - 1% $\phi_{\vec{p}\cdot\vec{q}}$ -dependence on cross-section

${}^{12}C(e,e'_{1}p\pi^{-})$

- GENIE normalized to data event rate
- Data corrected for bkg. events, e/p/ π^{\pm} acceptance and detection eff.
 - Not radiative corrected yet
 - Only statistical errors

Shape well described by GENIE FSI needed

Angular shape in good agreement with GENIE

Change to 0 proton mom

Low momentum protons are not described by MC Sensitive to FSI

Angular shape in good agreement with MC High θ_p possible only due to FSI

 $\delta \alpha_T$ is sensitive to mostly FSI Excellent shape description

FSI crucial to describe data

Good shape description

GENIE with FSI predicts correct rise

Beam energy reconstruction

Reconstruction method fails when FSI effects dominate

Proton transparency

- New proton transparency measurement on 4He, 12C and 56Fe
 - Probability that a struck proton leaves the nucleus without significant re-scattering
 - Study proton FSI similarly to neutrino scattering
- All previous transparency analysis measure (e,e'p)exp/(e,e'p)_{PWIA}
- Define a more data driven transparency analysis informed by theory

$\mathbf{T}_{\mathbf{A}} = \mathbf{N}(\mathbf{e},\mathbf{e'p})\mathbf{o}\pi / \mathbf{N}(\mathbf{e},\mathbf{e'})_{QE}$

- N(e,e'p)oπ: selected ιpoπ events
 - Background subtracted, radiative, acceptance and efficiency corrections
- **N(e,e')**_{*QE*}: inclusive QEL event rate
 - Use GENIE to determine QE dominated regions

Noah Steinberg

Proton transparency

ation soon.

29

- First transparency measurement on 4He
- Transparency flat in pp decreases with A
- Data to MC differences larger at small p_p , grow with A
 - MC very sensitive to nuclear structure models

First 2p and 1n1p knockout analysis

0.5

- Selecting 111p or 2p events with no visible pions in the final state
- 6 GeV on Carbon
- $N_{(e,e')} \sim 30M$
- $N_{(e,e'2p)} \sim 50k, N_{(e,e'1n1p)} \sim 30k$
- Will repeat analysis:
 - 2, 4 and 6GeV
 - Argon target

1.5

2

2.5

Conclusions

- The e4nu collaboration is building exhaustive exclusive electron-scattering cross-section library
 - CLAS6 and CLAS12 data
 - Study e-A interaction for different nuclear targets and energies
- Many measurements on its way
 - $1p_1\pi^{\pm}$ analysis pion and proton FSI in nuclear environment
 - New proton transparency measurement FSI and nuclear model
 - 1po π cross-section measurement (published)
 - First Argon Inclusive cross-section for many Q² slices
 - First two nucleon production analysis in Carbon
 - Inclusive (e,e' π) analysis on deuterium
- These data will give us new insights of nuclear effects in lepton-nucleus experiments

Conclusions

- Hadron production data of high quality valuable also for neutrino physics
- Data coming for a variety of targets, Argon
- Measurements focusing on untangling nuclear effects from cross-section

Thank you !

Join us!