

Document Number: LCLSII-HE-1.2-PP-0255-R0

Page 1 of 11

Document A	Approval:
Doounient,	approven.

Originator: Dan Gonnella, LCLS-II-HE Deputy Cryogenics System Manager
• Content/Format • Req ID's/Source ID's • Verif. Planning • SME Input, as appl
Reviewer: Ted Price - System Engineering Lead
Ted Price (Dec 27, 2020 09:57 PST)
Clarity • Format • Req ID's/Traceability • Change Control, as appl
Reviewer: Rich Poliak – Quality Assurance Manager
Rich Poliak Bich Poliak (Dec 30, 2020 11:49 PST)
General QA Provisions • Req's Validation/Verification
Reviewer: Josh Kaluzny, LCLS-II-HE FNAL CAM
Joshua Kaluzny
Concurrence • Scope Alignment • Execution at PLs, as appl
Reviewer: Katherine Wilson, LCLS-II-HE JLab CAM
Katherine Wilson (Jan 4, 2021 16:46 EST)
Concurrence Scope Alignment Execution at PLs, as appl
Reviewer: Tug Arkan, LCLS-II-HE FNAL STL
Tug Arkan Tug Arkan (Dec 20, 2020 14:42 CST)
Concurrence • Scope Alignment • Execution at PLs, as appl
Reviewer: John Hogan, LCLS-II-HE JLab STL
John Hogan
Concurrence • Scope Alignment • Execution at PLs, as appl
Approver: Joel Fuerst, LCLS-II-HE Cryogenic System Manager
Net we praced
Articulation • Meets Higher Level Expectations • Alt. CAM/SM Informed
Approver: Marc Ross, LCLS-II-HE Technical Director
Scope Alignment

See Document Review/Approval Matrix of Responsibilities

Revision History

Revision	Date Released	Description of Change
R0	1/7/2021	Original Release.

1 Scope

This document captures 1.3 GHz cryomodule performance requirements, requirements documentation, verification documentation, and method of verification. Physics requirements for the cryomodules are given as a reference in Table 1. Many requirements are verified by design studies or prototype

measurements. Those requirements to be verified by testing during cryomodule production are documented in cryomodule travelers.

Minimum acceptance criteria for production cryomodules are listed in Table 2 and include functional requirements for critical components. Due to the nature of variations in performance of some components, minimum performance of an individual component may not meet *average* requirements for the fully installed systems, e.g. for the cavity gradient. These minimum performance criteria address possible production variations that may lead to individual cryomodules not performing at the level of the average cryomodule in some parameters, while the assembled linac will meet the physics and functional requirements. Test results will be monitored to track the average of required parameters for all cryomodules to be installed, in order to ensure appropriate feedback to production processes when performance changes are noted or improvements needed. These results will be recorded in the partner lab traveler systems, Vector and Pansophy.

The minimum acceptance criteria that must be achieved for verification cryomodule in test at Fermilab are listed in Table 3. These acceptance criteria must be fulfilled in order to demonstrate that the cryomodule design and assembly practices are acceptable. Additionally these criteria demonstrate the success of the new doping protocol at the cavity vendor. This set of criteria shall be used to gate the production readiness review and allow beginning of the production cryomodule assembly at the respective workstations listed in Table 3 as well as gate the doping of the production SRF cavities. In addition to the acceptance criteria outlined in Table 3, the verification cryomodule must also meet all of the minimum acceptance criteria in Table 2.

If a criterion is not met it should trigger a non-conformance report for review, and should not prohibit work from continuing. Each cryomodule testing NCR must be dispositioned by the Cryogenics System Manager prior to warm up. Separately, a cryomodule test plan and traveler are under development to detail the full set of test and measurement procedures, record measurements, and provide hold points for acceptance review. A pre-warmup review with the Cryogenics System management will be held for each cryomodule following the conclusion of testing, but prior to warm up. This review will serve as a time to present the data that was measured, ensure that all NCRs have been dispositioned, and receive agreement that no additional tests need to be carried out. Clearance for warm up shall be given by the Deputy Cryogenics System Manager and Cryogenics System Manager.

Plans and Procedures						
Document Title: LCLS-II-HE 1.3 GHz Cryomodule Performance						
Requirements and Minimum Acce	ptance Criteria					
Document Number: LCLSII-HE-1.2-PP-0255-R0	Page 3 of 11					

Table 1 Cryomodule Physics Requirements and Verification Process

Sub-							Cryo Systems requirements, s	pecifications, and			Production v	verification	
Syster	n Parameter	Value	Units	Comment / Cryo Systems implications	Physics requireme	ent documents	interface docume	ents	Other reference or verification	tion documents	Documents of	or process	Verification method
Cryo					Title	Number	Title	Number					
oystema	Nominal beam energy	8	GeV	Cavity operating gradient and sufficient number of cavities. Heat load at required gradient is within cooling	LCLS-II-HE Parameters PRD	LCLS-II-HE-1.1-PR-0039			Gradient optimization	LCLSII-4.5-EN-0217	Cryomodule traveler		Measure minimum CW voltage produced by each
1				capacity; cavity QU vs E is within acceptance limits.	Linac Requirements PRD SCRF 1.3 GHz Cryomodule PRE	LCLS-II-HE-1.1-PR-0018 LCLSII-HE-1.2-PR-0029	1.3 GHz Superconducting RF Cryomodule	LCLSII-HE-1.2-FR-00	Cryogenic Heat Load 2 Conceptual Design Report	LCLSII-4.5-EN-0179 LCLSIIHE-DR-0001			cryomodule
	Maximum beam power	12	MM	Heat had at required gradient and beam current is within	I CI S-II-HE Parameters PRD	I CI S-II-HE-1 1-PR-0039	Cryogenic System Integration	LCLSII-4.1-FR-0327	Final Design Report	LCLSII-HE-1.1-DR-0084	Beamcommissioning		Ream measurement
2		1.2		cooling capacity; cavity Q0 vs E is within acceptance limits. Adequate HOM damping (see section below).			1.3 GHz Superconducting RF Cryomodule	LCLSII-HE-1.2-FR-005	Cryogenic Heat Load 52 Conceptual Design Report	LCLSII-4.5-EN-0179 LCLSIIHE-DR-0001	Dealifeening		Deannieasurement
	Maximum bunch rate	0.929	MHz	Heat load at required gradient and beam current is within	LCLS-II-HE Parameters PRD	LCLS-II-HE-1.1-PR-0039	Cryogenic System Integration	LCLSII-4.1-FR-0327	Gradient optimization	LCLSII-HE-1.1-DR- LCLSII-4.5-EN-0217	Beamcommissioning		Beam measurement
3				cooling capacity; cavity Q0 vs E is within acceptance limits. Adequate HOM damping (see section below).	Linac Requirements PRD	LCLS-II-HE-1.1-PR-0018	1.3 GHz Superconducting RF Cryomodule	LCLSII-HE-1.2-FR-00	Cryogenic Heat Load 52 Conceptual Design Report	LCLSII-4.5-EN-0179 LCLSIIHE-DR-0001			
	Maximum bunch charge	0.3	nC	Heat load at required gradient and beam current is within	LCLS-II-HE Parameters PRD	LCLS-II-HE-1.1-PR-0039	Cryogenic System megration	LCL311-4.1-FR-0327	Gradient optimization	LCLSII-4.5-EN-0217	Beamcommissioning		Beam measurement
4				cooling capacity; cavity Q0 vs E is within acceptance limits. Adequate HOM damping (see section below) and beamline HOM absorber (see section below). Adequate	Linac Requirements PRD	LCLS-II-HE-1.1-PR-0018	1.3 GHz Superconducting RF Cryomodule	LCLSII-HE-1.2-FR-005	Cryogenic Heat Load 52 Conceptual Design Report	LCLSII-4.5-EN-0179 LCLSIIHE-DR-0001			
				BPM resolution (see section below).			Cryogenic System Integration	LCLSII-4.1-FR-0327	Final Design Report	LCLSII-HE-1.1-DR-0084			
	Nominal bunch charge	0.1	nC	Heat load at required gradient and beam current is within cooling capacity; cavity Q0 vs E is within acceptance limits (acceptance limits) and	LCLS-II-HE Parameters PRD Linac Requirements PRD	LCLS-II-HE-1.1-PR-0039 LCLS-II-HE-1.1-PR-0018	1 3 GHz Superconducting PE Cryomodule		Gradient optimization Cryogenic Heat Load	LCLSII-4.5-EN-0217 LCLSII-4.5-EN-0179 LCLSIIHE-DR-0001	Beam commissioning		Beam measurement
5				beamline HOM absorber (see section below). Adequate BPM resolution (see section below).			Cryogenic System Integration	LCLSII-4.1-FR-0327	Final Design Report	LCLSII-HE-1.1-DR-0084			
	Minimum bunch charge	0.01	nC	Heat load at required gradient and beam current is within	LCLS-II-HE Parameters PRD	LCLS-II-HE-1.1-PR-0039			Gradient optimization	LCLSII-4.5-EN-0217	Beamcommissioning		Beam measurement
6	-			cooling capacity; cavity Q0 vs E is within acceptance limits. Adequate HOM damping (see section below) and beamline HOM absorber (see section below). Adequate	Linac Requirements PRD	LCLS-II-HE-1.1-PR-0018	1.3 GHz Superconducting RF Cryomodule	LCLSII-HE-1.2-FR-005	Cryogenic Heat Load 52 Conceptual Design Report	LCLSII-4.5-EN-0179 LCLSIIHE-DR-0001			
Ŭ				BPM resolution (see section below).			Cryogenic System Integration	LCLSII-4.1-FR-0327	Final Design Report	LCLSII-HE-1.1-DR-0084			
7	Linac availability	99.87	%	Includes cavities, cavity tuners, RF input coupler, cryomodule vacuum, Initial availability lower, 99.80%	Availability PRD	LCLSII-1.1-PR-0163			Cryomodule Availability Simulations	LCLSII-4.1-EN-0395	Cryosystems Availability Simulations	LCLSII-4.1-EN-03	95 Simulations using available MTTF data
	Systems lifetime	20	years				1.3 GHz Superconducting RF Cryomodule	LCLSII-HE-1.2-FR-005	52 Final Design Report	LCLSII-HE-1.1-DR-0084	Final Design Report	LCLSII-HE-1.1-DR	R-0084 Specifications and
8							Cryogenic System Integration	LCLSII-4.1-FR-0327	Reliability of the LCLS II SRF Cavity Tuner	Proceedings of SRF2015, Whistler, BC, Canada,			prototype lifetime testing
9	Linac tunnel longitudinal slope	0.5	%	Lower toward east studies Limits 2-phase pipe extent to individual cryomodul	les to		1.3 GHz Superconducting RF Cryomodule	LCLSII-HE-1.2-FR-005	52 Final Design Report	THPB065 LCLSII-HE-1.1-DR-0084	Final Design Report	LCLSII-HE-1.1-DR	R-0084 Design
-	Linac tunnel transverse slope	0.6	deg	lower toward south			1.3 GHz Superconducting RF Cryomodule	LCLSII-4.1-FR-0327 LCLSII-HE-1.2-FR-005	52 Final Design Report	LCLSII-HE-1.1-DR-0084	Final Design Report	LCLSII-HE-1.1-DR	R-0084 Design studies
10							Cryogenic System Integration	LCLSII-4.1-FR-0327					
11	Temperature range in the linac tunne	l 40-100	°F	Inpacts cryomodule stands compliance for expansion and contraction			Cryogenic System Integration	LCLSII-4.1-FR-0327	-		LCLS-II Cryomodule Stand Analysis	LCLSII-4.5-EN-041	8 Design studies
12	Cryogenic distribution in the linac tunnel			ODH, no liquid nitrogen in the tunnel			1.3 GHz Superconducting RF Cryomodule	LCLSII-HE-1.2-FR-005	2		Final Design Report	LCLSII-HE-1.1-DR	8-0084 Design studies
				1.3 GHz (Cryomodules								
13 GHZ 0	Cavity spacing within a cryomodule	~35	cm	"the cavities are spaced by roughly 35 cm so that the center of each cavity is separated by exactly 6 RF waveleonths"	SCRF 1.3 GHz Cryomodule PRD	LCLSII-HE-1.2-PR-0029			Master Spreadsheet (Fermilab TeamCenter)	ED0001152	Master Spreadsheet (Fermilab TeamCenter)	ED0001152	Design studies
14	Cavity spacing between adjacent cryomodules	~2.5	m	"the center of the last cavity and the center of the first cavity in the subsequent cryomodule are spaced by 11 RF wavelengths, roughly 2.5 meters"	SCRF 1.3 GHz Cryomodule PRE	DLCLSII-HE-1.2-PR-0029			Top Level Assembly Drawing (Fermilab TeamCenter)	F10009945	Top Level Assembly Drawing (Fermilab TeamCenter)	F10128458	Design studies
	Beamline vacuum chamber diameter	various		"aperture of the [device] will be equal or larger than the aperture of the SCRF cavities." "The absorber aperture	SCRF 1.3 GHz Cryomodule PRD	LCLSII-HE-1.2-PR-0029			Final Design Report	LCLSII-HE-1.1-DR-0084	Assembly, Cavity String LCLS-II	F10009887	Design studies
15	Beamline vacuum chamber coating	>10 um		may be smaller than that of the SCRF cavities."	SCRE 1 3 GHz Cryomodule PRC		1.3 GHz Superconducting RF Cryomodule	LCLSII-HE-1.2-FR-005	52 Final Design Report		Beam tube d	E10009424	Manufacturing specification
16	Beamine vacuum chamber coaung	≥ io µiii		packages, including cavity bellows, quadrupole chamber, BPM, etc., will be Cu-coated to increase the electrical and thermal conductivity. The minimum coating thickness is	SCRF 1.5 GHZ GIYOIIIOUUle FRL	10131111-1.2-FR-0029				LCLSIFTE-1. PDR-0004	beam tube u	F 10003424	Wandracturing specification
10	Number of equilies and environmental	0		10 um.			1.3 GHz Superconducting RF Cryomodule	LCLSII-HE-1.2-FR-005	52				
	Number of cavilies per cryomodule	0				LOLOII-RE-1.2-PK-0029				LGLOII-4.3-EIN-U179	глагоезул кероп	LULSII-HE-1.1-DR	-0004 Design studies
17	Total number of installed	55			LCLS-II-HE Parameters PRD	LCLS-II-HE-1.1-PR-0039	1.3 GHz Superconducting RF Cryomodule	LCLSII-HE-1.2-FR-005	Conceptual Design Report 52 Final Design Report Cryogenic Heat Load	LCLSIIHE-DR-0001 LCLSII-HE-1.1-DR-0084 LCLSII-4.5-EN-0179	Final Design Report	LCLSII-HE-1.1-DR	R-0084 Design
10	studies cryomodules				LCLS-II-HE Parameters PRD	LCLS-II-HE-1.1-PR-0039			Conceptual Design Report	LCLSIIHE-DR-0001			····
IŎ	Number of installed cryomodules in	1			SCRF 1.3 GHz Cryomodule PRD	LCLSII-HE-1.2-PR-0029	1.3 GHz Superconducting RF Cryomodule	LCLSII-HE-1.2-FR-005	52 Final Design Report Cryogenic Heat Load	LCLSII-HE-1.1-DR-0084 LCLSII-4.5-EN-0179	Final Design Report	LCLSII-HE-1.1-DR	R-0084 Design
19	STUDIES LU						Cryogenic Distribution System	LCLSII-4.9-FR-0057	Conceptual Design Report Final Design Report	LCLSIIHE-DR-0001 LCLSII-HE-1.1-DR-0084			
	Number of installed cryomodules in studies L1	2			SCRF 1.3 GHz Cryomodule PRD	LCLSII-HE-1.2-PR-0029			Cryogenic Heat Load	LCLSII-4.5-EN-0179	Final Design Report	LCLSII-HE-1.1-DR	R-0084 Design
20							Cryogenic Distribution System	LCLSII-4.9-FR-0057	Conceptual Design Report Final Design Report	LCLSIIHE-DR-0001 LCLSII-HE-1.1-DR-0084			

	Plans and Procedures						
	Document Title: LCLS-II-HE 1.3 GHz Cryomodule Performance						
	Requirements and Minimum Acce	ptance Criteria					
1	Document Number: LCLSII-HE-1.2-PP-0255-R0	Page 4 of 11					

Sub-							Cryo Systems requirements, s	pecifications, and			Production	verification	
Syster	n Parameter	Value	e Units	Comment / Cryo Systems implications	Physics requirement	nt documents	interface docume	ents	Other reference or verificat	tion documents	Documents of	or process	Verification method
	Number of installed cryomodules in	12			SCRF 1.3 GHz Cryomodule PRD L	LCLSII-HE-1.2-PR-0029			Cryogenic Heat Load	LCLSII-4.5-EN-0179	Final Design Report	LCLSII-HE-1.1-DR	-0084 Design
21	studies L2								Conceptual Design Report	LCLSIIHE-DR-0001			
-	Number of installed cryomodules in	13			SCRF 1.3 GHz Crvomodule PRD L	LCLSII-HE-1.2-PR-0029	Cryogenic Distribution System	LCLSII-4.9-FR-0057	Final Design Report Cryogenic Heat Load	LCLSII-HE-1.1-DR-0084 LCLSII-4.5-EN-0179	Final Design Report	LCLSII-HE-1.1-DR	-0084 Design
	studies L3				··· · · · · · · · · · · · · · · · · ·				Concentual Decian Report		5 17		
22							Cryogenic Distribution System	LCLSII-4.9-FR-0057	Final Design Report	LCLSIIHE-DR-0001 LCLSII-HE-1.1-DR-0084			
	Number of installed cryomodules in studies 14	27			SCRF 1.3 GHz Cryomodule PRD L	LCLSII-HE-1.2-PR-0029			Cryogenic Heat Load	LCLSII-4.5-EN-0179	Final Design Report	LCLSII-HE-1.1-DR	-0084 Design
23							Chrogonia Distribution System		Conceptual Design Report	LCLSIIHE-DR-0001			
24	Beam current for initial heat load	300	μA	for beam induced losses	SCRF 1.3 GHz Cryomodule PRD L	LCLSII-HE-1.2-PR-0029		ECE311-4.9-FR-0037	Cryogenic Heat Load	LCLSII-4.5-EN-0179	Cryogenic Heat Load	LCLSII-4.5-EN-01	79 Design studies
24	calculation Captured dark current	<30	nA	per cryomodule, in each direction, at 20.8 MV/m	SCRF 1.3 GHz Cryomodule PRD L	LCLSII-HE-1.2-PR-0029	Cryogenic System Integration	LCLSII-4.1-FR-0327	Final Design Report Radiation Fields from Field Emission at the	LCLSII-HE-1.1-DR-0084 RP-15-03	Cryomodule traveler		Measure dark current
25									SCRF cavities of LCLS-II Final Design Report	LCLSII-HE-1.1-DR-0084			produced by each cryomodule
	Integrated radiation dose near	<100	Mrad	20-years operation	SCRF 1.3 GHz Cryomodule PRD L	LCLSII-HE-1.2-PR-0029	Final Design Report	LCLSII-HE-1.1-DR-00	Radiation Fields from Field Emission at the	RP-15-03	Radiation Fields from Fiel	d RP-15-03	Simulations
26	quadrupole								SCRF cavities of LCLS-II		cavities of LCLS-II		
	Cryomodule length including	12.22	m		SCRF 1.3 GHz Cryomodule PRD L	LCLSII-HE-1.2-PR-0029	Cryogenic System Integration LCLS-II 1.3GHz Cryomodule Mechanic	LCLSII-4.1-FR-0327 al ED0004361			Top Level Assembly	F10009945	Design studies
07	interspace region						Design				Drawing (Fermilab		
21											Teamcenter)		
28	Fundamental power coupler configuration			power couplers mounted on right side of cryomodule looking downstream, to allow access from walkway in linac tunnel	SCRF 1.3 GHZ Cryomodule PRD 1	LCLSII-HE-1.2-PR-0029	Design	ai eduuu4361	Top Level Assembly Drawing (Fermilab TeamCenter)	F10009945	Top Level Assembly Drawing (Fermilab TeamCenter)	F10009945	Design studies
1.3 GHz	cavities												
	RF Frequency	1.3	GHz	1.3 GHz using TESLA cavity design. Allows	LCLS-II-HE Parameters PRD	LCLS-II-HE-1.1-PR-0039			Cryomodule design methodology	LCLSII-4.5-EN-0186	Cryomodule traveler		Measure cavity performance
29				FLASH, ILC, XFEL, etc.	SCRF 1.3 GHz Cryomodule PRD L	LCLSII-HE-1.2-PR-0029			Conceptual Design Report	LCLSIIHE-DR-0001			at 1.5 GHZ
							1.3 GHz Superconducting RF Cryomodule	LCLSII-HE-1.2-FR-00	52 Final Design Report	LCLSII-HE-1.1-DR-			
							0084 Cryogenic System Integration 1.3 GHz Cryomodule Technical Description	LCLSII-4.1-FR-0327 LCLSII-HE-1.2-ES-00	60				
	RF pulse mode			CW Requires modifications to existing pulsed SRE	SCRE 1 3 GHz Cryomodule PRD 1	CLSII-HE-1 2-PR-0029			Cryomodule design methodology	LCL SII-4 5-EN-0186	Cryomodule traveler		Measure cavity performance
20	iti pulse mode			technology designs developed for FLASH. ILC, XFEL.	SONT 1.3 ONZ OLYDINODUIE THD L	LOLON-ITE-1.2-1 10023			Cryomodule designmethodology	20201-4.3-214-0100	Cryomodule traveler		with CW RF power
30									Cryogenic Heat Load	LCLSII-4.5-EN-0179			
							1.3 GHz Superconducting RF Cryomodule	LCLSII-HE-1.2-FR-00	52 Conceptual Design Report	LCLSIIHE-DR-0001			
							0084						
	Cavity nominal gradient	20.8	MV/m	with <10 nA per cryomodule captured dark currrent (each	LCLS-II-HE Parameters PRD	LCLS-II-HE-1.1-PR-0039	1.3 GHz Cryomodule Technical Description	LCLSII-HE-1.2-ES-00	Conceptual Design Report	LCLSIIHE-DR-0001	Cryomodule traveler		Measure cavity gradient
31				direction) and 100 Mrad near quadrupoles in 20 years	SCRF 1.3 GHz Cryomodule PRD L	LCLSII-HE-1.2-PR-0029			Final Design Report	LCLSII-HE-1.1-DR-0084			
									Cryogenic Heat Load	LCLSII-4.5-EN-0179			
							1.3 GHZ Superconducting RF Cryomodule	LULSII-HE-1.2-FR-00	Acceptance Criteria and Test Procedures				
							Cryogenic System Integration	LCLSII-4.1-FR-0327					
32	Installed 1.3 GHz voltage	8.64	GV	At nominal cavity gradient, includes overhead for beam de- phasing and redundancy.	-LCLS-II-HE Parameters PRD	LCLS-II-HE-1.1-PR-0039			Conceptual Design Report	LCLSIIHE-DR-0001	Cryomodule traveler		Measure minimum CW voltage produced by each
									First Design Demont				
<u> </u>	Accelerating cavity type			"TESLA-Technology", 9-cell, L-band, R/Q 1012 Ω, 1.0377	SCRF 1.3 GHz Cryomodule PRD L	CLSII-HE-1.2-PR-0029			Conceptual Design Report	LCLSII-HE-1.1-DR-0084 LCLSIIHE-DR-0001	Final Design Report	LCLSII-HE-1.1-DR	-0084 Design
33				studies mactive length. Cavity properties drive performant	ce and				Final Design Report	LCLSII-HE-1 1-DR-0084			-
				noundu.					Cryogenic Heat Load	LCLSII-4.5-EN-0179			
							1.3 GHz Superconducting RF Cryomodule 0052 Cryogenic System Integration	LCLSII-HE-1.2-FR- LCLSII-4.1-FR-0327					
34	Cavity qualification gradient in vertic test	al 23	MV/m	and field emitted current 0 pA in each direction, with LCI Q0≥2.5×10 ¹⁰	LS-II-HE Parameters PRD SCRF 1.3 GHz Cryomodule PRD L	LCLS-II-HE-1.1-PR-0039 LCLSII-HE-1.2-PR-0029	SRF Dressed Cavity Technical Specification	LCLSII-HE-1.2-TS-008	Final Design Report 55 Final Report on LCLS-II Cavity Test Acceptance Criteria and Test Procedures	LCLSII-HE-1.1-DR-0084 LCLSII-4.5-EN-0590	Cavity traveler		Measure cavity gradient
	Number of HE accelerating cavities	160			LCLS-II-HE Parameters PRD	LCLS-II-HE-1.1-PR-0039			Conceptual Design Report	LCLSIIHE-DR-0001	Final Design Report	LCLSII-HE-1.1-DR	-0084 Design studies
35									Final Design Report	LCLSII-HE-1.1-DR-0084			
							1.3 GHz Superconducting RF Cryomodule 0052 Cryogenic System Integration	LCLSII-HE-1.2-FR- LCLSII-4.1-FR-0327	Cryogenic Heat Load	LCLSII-4.5-EN-0179			
36	Installed cavity redundancy	6	%	With 18 of the 280 cavities unpowered the linac will still achieve 4.0 GeV	LCLS-II-HE Parameters PRD	LCLS-II-HE-1.1-PR-0039			Conceptual Design Report	LCLSIIHE-DR-0001	Cryomodule traveler		Measure minimum CW voltage produced by each
					SCRF 1.3 GHz Cryomodule PRD L	LCLSII-HE-1.2-PR-0029			Final Design Report	LCLSII-HE-1.1-DR-0084			S. JOHIOGOIO
<u> </u>	Installed energy overhead for	1	%		LCLS-II-HE Parameters PRD	LCLS-II-HE-1.1-PR-0039			Conceptual Design Report	LCLSIIHE-DR-0001	Cryomodule traveler		Measure minimum CW
37	feedback												voltage produced by each cryomodule
					Linac Requirements PRD	LCLS-II-HE-1.1-PR-0018			Final Design Report	LCLSII-HE-1.1-DR-0084			

Plans and Procedures					
Document Title: LCLS-II-HE 1.3 GHz Cryomodule Performance					
Requirements and Minimum Acce	ptance Criteria				
Document Number: LCLSII-HE-1.2-PP-0255-R0	Page 5 of 11				

Sub-							Crvo Systems requirements sr	pecifications and			Production verification	
System	n Parameter	Value	e Units	Comment / Cryo Systems implications	Physics requirement	t documents	interface docume	ents	Other reference or verification	tion documents	Documents or process	Verification method
	Cavity operating temperature	2	K		Linac Requirements PRD Li	CLS-II-HE-1.1-PR-0018			Cryogenic System Operating Temperature		Cryomodule traveler	Measure presssure in 2-
					SCRF 1.3 GHz Cryomodule PRD LC	CLSII-HE-1.2-PR-0029			Conceptual Design Report	LCLSII-4.5-EN-0185 LCLSIIHE-DR-0001		phase pipe
38									Final Design Report Cryogenic Heat Load	LCLSII-HE-1.1-DR-0084 LCLSII-4.5-EN-0179		
							Cryogenic System Integration	LCLSII-4.1-FR-0327	Acceptance Criteria and Test Procedures CM Instrumentation Specification	LCLSII-4.5-ES-0415		
	Cavity average Q0	2.7x10 ¹¹	0	less than ±20% variation in Q0	LCLS-II-HE Parameters PRD	CLS-II-HE-1.1-PR-0039	1.3 GHZ Superconducting RF Cryomodule	LCLSII-HE-1.2-FR-00	Conceptual Design Report	LCLSIIHE-DR-0001	Cryomodule traveler	Measure cavity Q0 with CW
				average of 1/Q0 < 1/2.7x10 ¹⁰	SCRF 1.3 GHz Cryomodule PRD LC	CLSII-HE-1.2-PR-0029			Final Design Report	LCLSII-HE-1.1-DR-0084		RF power
39									Cryogenic Heat Load Final Report on LCLS-II Cavity Test	LCLSII-4.5-EN-0179 LCLSII-4.5-EN-0590		
							1.3 GHz Superconducting RF Cryomodule	LCLSII-HE-1.2-FR-00	Acceptance Criteria and Test Procedures 52 Final Report on the LCLS-II High Qo R&I Program	LCLSII-8.2-EN-0523		
40	Cavity minimum Q0	1.5x10 ¹	0	at 20.8 MV/m	SCRF 1.3 GHz Cryomodule PRD LC	CLSII-HE-1.2-PR-0029			Final Report on LCLS-II Cavity Test Acceptance Criteria and Test Procedures	LCLSII-4.5-EN-0590	Cryomodule traveler	Measure cavity Q0 with CW RF power
41	Beam power loss per injector cryomodule cavity	1	W	"beam losses in the cryomodule(s) should be less than 1 W per rf cavity"	LCLS-II SCRF Injector System LC	CLSII-2.2-PR-0084			Radiation Fields from Field Emission at the Measured dark current of ~ 0.1 nA at APEX prototype exceeds LCLS-II requirement by 3 orders of magnitude	RP-15-03	Radiation Fields from Field RP-15-03	Simulations
1.3 GHz (cryomodule alignment	wrt 01	mm	When cold	SCRE 1 3 GHz Cryomodule PRD 1 0	CL SILHE-1 2-PR-0029	1.3 GHz Cryomodule External Physics	al I CI SII-4 5-IC-0661	See Alignment Workshop, May 22, 2015		SLAC Survey & Alignment	Measurement during CM
42	linac centerline, transverse (X, Y)		allow this		0E0111E-1.2-11(-0023	Interfaces	ar EGEOII-4.5-10-0001	https://indico.fnal.gov/conferenceDisplay.py? confId=9994https://indico.fnal.gov/conferenceD	isplay.py?confId=9994	SEAO Sulvey & Alighment	measurement during CM
43	Cryomodule alignment resolution linac centerline, longitudinal (Z)	wrt 0.2	mm	installation requirement, CM must have survey fiducials to allow this	SCRF 1.3 GHz Cryomodule PRD LCI	LSII-HE-1.2-PR-0029	1.3 GHz Cryomodule External Phy Interfaces	ysical LCLSII-4.5-IC-066	See Alignment Workshop, May https://indico.fnal.gov/conferenc confld=9994https://indico.fnal.go	22, 2015. eDisplay.py? w/conferenceDisplay.py?conflc	SLAC Survey & Alignment	Measurement during CM installation
44	Cavity X,Y misalignments wrt cryomodule	1	mm	alignment of internal components within the cryomodule	SCRF 1.3 GHz Cryomodule PRD LCI	LSII-HE-1.2-PR-0029	1.3 GHz Superconducting RF Cryomodule	e LCLSII-HE-1.2-FR	-0052 See Alignment Workshop, May https://indico.fnal.gov/conferen confId=9994https://indico.fnal.g	22, 2015. ceDisplay.py? gov/conferenceDisplay.py?co	Cryomodule traveler	Measurement during CM assembly
45	Quadrupole X,Y misalignments v cryomodule	vrt 1	mm	alignment of internal components within the cryomodule	SCRF 1.3 GHz Cryomodule PRD LCI	LSII-HE-1.2-PR-0029	1.3 GHz Superconducting RF Cryomodule	e LCLSII-HE-1.2-FR	-0052 See Alignment Workshop, May https://indico.fnal.gov/conferen confId=9994https://indico.fnal.gov/conferen nfId=9994	22, 2015. ceDisplay.py? gov/conferenceDisplay.py?co	Cryomodule traveler	Measurement during CM assembly
46	BPM X, Y misalignments wrt cryomodule	1	mm	alignment of internal components within the cryomodule	SCRF 1.3 GHz Cryomodule PRD LCI	LSII-HE-1.2-PR-0029	1.3 GHz Superconducting RF Cryomodule	e LCLSII-HE-1.2-FR	-0052 See Alignment Workshop, May https://indico.fnal.gov/conferen confid=9994bttps://indico.fnal.go	22, 2015. ceDisplay.py? py/conferenceDisplay.py?conflic	Cryomodule traveler	Measurement during CM assembly
47	Cryomodule X, Y misalignments v linac	wrt 0.3	mm	installation requirement, CM must have survey fiducials to allow this	SCRF 1.3 GHz Cryomodule PRD LC	LSII-HE-1.2-PR-0029	1.3 GHz Cryomodule External Phy Interfaces	ysical LCLSII-4.5-IC-066	I See Alignment Workshop, May https://indico.fnal.gov/conferen confid=9994https://indico.fnal.g	22, 2015. ceDisplay.py? gov/conferenceDisplay.py?co	Cryomodule traveler	Measurement during CM assembly
48	Cavity Z misalignments wrt cryomodule	2	mm	alignment of internal components within the cryomodule	SCRF 1.3 GHz Cryomodule PRD LCI	LSII-HE-1.2-PR-0029	1.3 GHz Superconducting RF Cryomodule	e LCLSII-HE-1.2-FR	-0052 See Alignment Workshop, May https://indico.fnal.gov/conferen confld=9994https://indico.fnal.g	22, 2015. ceDisplay.py? gov/conferenceDisplay.py?co	Cryomodule traveler	Measurement during CM assembly
49	Quadrupole Z misalignments wrt cryomodule	2	mm	alignment of internal components within the cryomodule	SCRF 1.3 GHz Cryomodule PRD LCI	LSII-HE-1.2-PR-0029	1.3 GHz Superconducting RF Cryomodule	e LCLSII-HE-1.2-FR	-0052 See Alignment Workshop, May https://indico.fnal.gov/conferen confld=9994https://indico.fnall.	22, 2015. ceDisplay.py? gov/conferenceDisplay.py?co	Cryomodule traveler	Measurement during CM assembly
50	BPM Z misalignments wrt cryom	odule 2	mm	alignment of internal components within the cryomodule	SCRF 1.3 GHz Cryomodule PRD LCI	LSII-HE-1.2-PR-0029	1.3 GHz Superconducting RF Cryomodule	e LCLSII-HE-1.2-FR	-0052 See Alignment Workshop, May https://indico.fnal.gov/conferen confld=9994https://indico.fnal.g	22, 2015. ceDisplay.py? gov/conferenceDisplay.py?co	Cryomodule traveler	Measurement during CM assembly
51	Cryomodule Z misalignments wrong linac	1 2	mm	installation requirement, CM must have survey fiducials to allow this	SCRF 1.3 GHz Cryomodule PRD LC	LSII-HE-1.2-PR-0029	1.3 GHz Cryomodule External Phy Interfaces	ysical LCLSII-4.5-IC-066	See Alignment Workshop, May https://indico.fnal.gov/conferen confId=9994https://indico.fnal.d	22, 2015. ceDisplay.py? gov/conferenceDisplay.py?co	Cryomodule traveler	Measurement during CM assembly
52	Cavity tilt misalignments	0.5	mrad	alignment of internal components within the cryomodule	SCRF 1.3 GHz Cryomodule PRD LCI	LSII-HE-1.2-PR-0029	1.3 GHz Superconducting RF Cryomodule	e LCLSII-HE-1.2-FR	-0052 See Alignment Workshop, May https://indico.fnal.gov/conferen confid=9994.https://indico.fnal.gov/conferen	22, 2015. ceDisplay.py?	Cryomodule traveler	Measurement during CM assembly
53	Quadrupole tilt misalignments	3	mrad	alignment of internal components within the cryomodule	SCRF 1.3 GHz Cryomodule PRD LCI	LSII-HE-1.2-PR-0029	1.3 GHz Superconducting RF Cryomodule	e LCLSII-HE-1.2-FR	-0052 See Alignment Workshop, May https://indico.fnal.gov/conferen confld=9994https://indico.fnal.gov/conferen	22, 2015. ceDisplay.py? pov/conferenceDisplay.py?co	Cryomodule traveler	Measurement during CM assembly
54	BPM tilt misalignments	3	mrad	alignment of internal components within the cryomodule	SCRF 1.3 GHz Cryomodule PRD LCI	LSII-HE-1.2-PR-0029	1.3 GHz Superconducting RF Cryomodule	e LCLSII-HE-1.2-FR	-0052 See Alignment Workshop, May https://indico.fnal.gov/conferen confid=9994https://indico.fnal.gov/conferen	22, 2015. ceDisplay.py?	Cryomodule traveler	Measurement during CM assembly
	Cryomodule tilt misalignments	0.05	mrad	installation requirement, CM must have survey fiducials to allow this	SCRF 1.3 GHz Cryomodule PRD LC	LSII-HE-1.2-PR-0029	1.3 GHz Cryomodule External Phy	ysical LCLSII-4.5-IC-066	Interfaces See Alignment Workshop, May https://indico.fnal.gov/conferenc	22, 2015. eDisplay.py?	Cryomodule traveler	Measurement during CM assembly
55									confld=9994https://indico.fnal.go	v/conferenceDisplay.py?c		
56	Cavity roll misalignments	10	mrad	alignment of internal components within the cryomodule	SCRF 1.3 GHz Cryomodule PRD LCI	LSII-HE-1.2-PR-0029	1.3 GHz Superconducting RF Cryomodule	e LCLSII-HE-1.2-FR	-0052 See Alignment Workshop, May https://indico.fnal.gov/conferen confid=9994https://indico.fnal.gov/ nfid=9994	22, 2015. ceDisplay.py? gov/conferenceDisplay.py?co	Cryomodule traveler	Measurement during CM assembly
57	Quadrupole roll misalignments	3	mrad	alignment of internal components within the cryomodule	SCRF 1.3 GHz Cryomodule PRD LCI	LSII-HE-1.2-PR-0029	1.3 GHz Superconducting RF Cryomodule	e LCLSII-HE-1.2-FR	-0052 See Alignment Workshop, May https://indico.fnal.gov/conferen confld=9994https://indico.fnal.gov/conferen	22, 2015. ceDisplay.py?c gov/conferenceDisplay.py?co	Cryomodule traveler	Measurement during CM assembly
58	BPM roll misalignments	3	mrad	alignment of internal components within the cryomodule	SCRF 1.3 GHz Cryomodule PRD LCI	LSII-HE-1.2-PR-0029	1.3 GHz Superconducting RF Cryomodule	e LCLSII-HE-1.2-FR	-0052 See Alignment Workshop, May https://indico.fnal.gov/conferen confld=9994https://indico.fnal.gov/conferen	22, 2015. ceDisplay.py? gov/conferenceDisplay.py?co	Cryomodule traveler	Measurement during CM assembly
59	Cryomodule roll	2	mrad	installation requirement, CM must have survey fiducials to allow this	SCRF 1.3 GHz Cryomodule PRD LCI	ESII-HE-1.2-PR-0029	1.3 GHz Cryomodule External Phy	ysical LCLSII-4.5-IC-066	I Interfaces See Alignment Workshop, May https://indico.fnal.gov/conferen confld=9994https://indico.fnal.gov/ nfld=9994	v 22, 2015. ceDisplay.py? gov/conferenceDisplay.py?co	SLAC Survey & Alignment	Measurement during CM installation

Plans and Procedures					
Document Title: LCLS-II-HE 1.3 GHz Cryomodule Performance					
Requirements and Minimum Acce	ptance Criteria				
Document Number: LCLSII-HE-1.2-PP-0255-R0	Page 6 of 11				

Sub-							Cryo Systems requirements, s	pecifications, and		
System	Parameter	Value	Units	Comment / Cryo Systems implications	Physics requirem	ent documents	interface docume	ents	Other reference or verificat	ion documents
1.3 GHz fu	undamental power coupler Nominal Qext	6x10 ⁷			SCRF 1.3 GHz Cryomodule PRI	D LCLSII-HE-1.2-PR-0029			Cryogenic Heat Load	LCLSII-4.5-EN-0179
60					SSA Based RF Systems and LLRF Requirements	LCLS-II-HE-1.3-PR-0030				
61	Qextrange	1x10 ⁷ -			SCRF 1.3 GHz Cryomodule PRI	D LCLSII-HE-1.2-PR-0029				
62	Nominal power rating	4.6	kW		SCRF 1.3 GHz Cryomodule PRI	D LCLSII-HE-1.2-PR-0029			Results of the cavity Intergrated tests in Horizontal Test Stand at FNAL (AES021, AES022 and AES027)	LCLS-II TN-15-43
63	Maximum power rating	7	kW		SCRF 1.3 GHz Cryomodule PRI	D LCLSII-HE-1.2-PR-0029			ALCOLO UNE ALCOLI	
64	Fundamental power coupler dipole deflection	≤3x10 ^{-∜}			SCRF 1.3 GHz Cryomodule PRI	D LCLSII-HE-1.2-PR-0029			Coupler RF Kick in the 1.3 GHz LCLS-II Accelerating Cavity	LCLS-II-TN-14-04
1.3 GHz c	avity tuner									
65	Slow tuner range	<-670 kHz		motor-driven system	SCRF 1.3 GHz Cryomodule PR	D LCLSII-HE-1.2-PR-0029			Final Design Report Tuner electro-mechanical design	LCLSII-HE-1.
05									I-4.5-EN-0221 Results of the	cavity Intergrated
	Slow tuner resolution	1.8	Hz	motor-driven system	SCRF 1.3 GHz Cryomodule PR	D LCLSII-HE-1.2-PR-0029	Cryomodule SRF Cavity Tuner		tests in LCLSII-TN-15-43 Horiz Final Design Report measurement	ontal Test Stand LCLSII-HE-1.
66									Tuner electro-mechanical design measurement	LCLSII-4.5-Et
							Covomodule SRE Cavity Tuper			
	Fast tuner range	±1 kHz		piezo system	SCRF 1.3 GHz Cryomodule PR	D LCLSII-HE-1.2-PR-0029			Final Design Report	LCLSII-HE-1.
67									Tuner electro-mechanical design	LCLSI
							Cryomodule SRF Cavity Tuner	LCLSII-4.5-ES-0385	I-4.5-EN-0221 Results of the tests in LCLSII-TN-15-43 Horiz	cavity Intergrated ontal Test Stand
	Fast tuner resolution	<1	Hz	piezo system	SCRF 1.3 GHz Cryomodule PR	D LCLSII-HE-1.2-PR-0029			Final Design Report	LCLSII-HE-1.
68									Tuner electro-mechanical design	LCLSII-4.5-EN-0221
							Cryomodule SRF Cavity Tuner	LCLSII-4.5-ES-0385	Results of the cavity Intergrated tests in Horizontal Test Stand at FNAL (AES021; AES028 and AES027)	LCLSII-TN-15-43
1.3 GHz R	Field and LLRF Field amplitude stability per	0.01	% RMS	integrated through 8 cavities in a cryomodule from CM02	SCRF 1.3 GHz Cryomodule PR	D LCLSII-HE-1.2-PR-0029			Performance and Eunctional Requirements for	LCLSII-2 7-FR-0371
69	cryomodule	0.01	70, TUNO	onward, assuming uncorrelated errors between cavities first cavities in L0 (CM01) have similar tolerance per cavity.					the LCLS-II Low Level RF System Low Level Radio Frequency ESD	LCLSII-4.1-ES-0569
70	Field amplitude stability per cavity	0.03	%	for cavities other than the first cavities in CM0, which have 0029 tolerance 0.01% per cavity.	SCRF 1.3 GHz Cryomodule PRD) LCLSII-HE-1.2-PR-			Performance and Functional Requirements for the LCLS-II Low Level RF System Low Level Radio Frequency ESD	LCLSII-2.7-FR-0371 LCLSII-4.1-ES-0569
71	Field phase stability per cryomodule	0.01	deg, RMS	integrated through 8 cavities in a cryomodule from CM02 onward, assuming uncorrelated errors between cavities; first cavities in L0 (CM01) have similar tolerance per cavity.	SCRF 1.3 GHz Cryomodule PRD	D LCLSII-HE-1.2-PR-0029			Performance and Functional Requirements for Low Level Radio Frequency ESD	LCLSII-2.7-FR-0371 LCLSII-4.1-ES-0569
72	Field phase stability per cavity	0.03	deg	for cavities other than the first cavities in CM0, which have 0029 tolerance 0.01 deg per cavity.	SCRF 1.3 GHz Cryomodule PRD) LCLSII-HE-1.2-PR-			Performance and Functional Requirements for the LCLS-II Low Level RF System Low Level Radio Frequency ESD	LCLSII-2.7-FR-0371 LCLSII-4.1-ES-0569
73	Cavity field probe external Q 7.5 -2	5X10 ¹¹ .5X10 ¹²		Nominal 1.0X10 ¹² , too low gives insufficient signal, too high results in cable heating					Performance and Functional Requirements for The LCLS-II Low Level RF System	LCLSII-2.7-FR-0371
1.3 GHz c	avity HOMs Cavity HOM QL	<1×10 ⁶		monopole and dipole	SCRF 1.3 GHz Cryomodule PRI	D LCLSII-HE-1.2-PR-0029			Final Design Report	LCLSII-HE-1.1-DR-0084
74		<1210								
75	Cavity monopole HOM maximum R/C	Q 175	Ω	TN uses calculated R/Q for LCLS-II cavities	SCRF 1.3 GHz Cryomodule PRI	D LCLSII-HE-1.2-PR-0029			Resonant excitation of high order modes in superconducting RF cavities of LC LS II linac	LCLS-II-TN-15-06
76	Cavity dipole HOM maximum R/Q	3x10 ⁵	Ω/m	TN uses calculated R/Q for LCLS-II cavities	SCRF 1.3 GHz Cryomodule PRI	D LCLSII-HE-1.2-PR-0029			Resonant excitation of high order modes in superconducting RF cavities of LC LS II linac	LCLS-II-TN-15-06
77	HOM coupler dipole deflection	3x10 ⁻³			SCRF 1.3 GHz Cryomodule PRI	D LCLSII-HE-1.2-PR-0029			Final Design Report	LCLSII-HE-1.1-DR-0084
78	Number of cavity HOM couplers per	2			SCRF 1.3 GHz Cryomodule PRI	D LCLSII-HE-1.2-PR-0029			Final Design Report	LCLSII-HE-1.1-DR-0084

The only official copy of this file is located in the LCLS-II-HE Controlled Document Site. Before using a printed/electronic copy, verify that it is the most current version.

	Proc	duction v	erification r process	Verification method
	Cryomodu	le traveler		Measurement
	Final Design F	Report	LCLSII-HE-1.1-DR-0	0084 Simulation
	Cryomodu	ile traveler		Measurement
	Final Design F	Report	LCLSII-HE-1.1-DR-0	0084 Simulation
	Coupler R GHz LCLS-II / Cavity	F Kick in the Accelerating	1.3 LCLS-N-14-04	Simulation
-1.1	-DR-0084	Cryomodule 1	traveler	Measurement
-1.1	-DR-0084	Tuner elec	tro-mechanical	Prototype
5-EN	-0221	design Results of Intergrated tests in Horizontal	LCLS the cavity LCLSI	II-4.5-EN-0221 II-TN-15-43 Prototype
		Test Stand		
-1.1	-DR-0084	Cryomodule	raveler	weasurement
-1.1	-DR-0084 design Results of Intergrated Horizontal To FNAL (AESC and AES027)	the cavity tests ir est Stand a 021; AES028	LCLSII-4.5-EN-0221 LCLSII-TN-15-43 n t 3	Prototype measurement
	Prototype cryc measurement	omodule		Measurement
	Prototype cryc measurement	omodule		Measurement
	Prototype cryc	omodule		Measurement
	Prototype cryc measurement	omodule		Measurement
	Prototype cryo measurement	omodule		Measurement
ŀ	Resonant exc order modes i superconduct cavities of LC	itation of high n ing RF LS II linac	LCLS-II -TN-15-06	Calculation
	Resonant exc order modes i superconduct cavities of LC	itation of high n ing RF LS II linac	LCLS-II -TN-15-06	Calculation
	Resonant exci order modes i superconduct cavities of LCI	itation of high n ing RF LS II linac	LCLS-II -TN-15-06	Calculation
	Coupler RF Ki GHz LCLS-II / Cavity	ick in the 1.3 Accelerating	LCLS-II -TN-14-04	Simulation
ŀ	Final Design F	Report	LCLSII-HE-1.1-DR-0	0084 Design studies

Plans and Procedures					
Document Title: LCLS-II-HE 1.3 GHz Cryomodule Performance					
Requirements and Minimum Acceptance Criteria					
Document Number: LCLSII-HE-1.2-PP-0255-R0	Page 7 of 11				

Sub-							Cryo Systems requirements, specifications, and			
System	Parameter	Value	Units	Comment / Cryo Systems implications	Physics requireme	ent documents	interface documer	nts	Other reference or verification	tion documents
	cavity									
	Maximum cavity HOM coupler	<50	W		SCRF 1.3 GHz Cryomodule PRD	LCLSII-HE-1.2-PR-0029				
79	absorbed power									
1.3 GHz c	ryomodule HOM absorber	50	14/						Final Desire Desert	
80	power	50	vv		SCRF 1.3 GHZ Cryomodule PRD	CCLSII-HE-1.2-PR-0029			Final Design Report	LCLSII-HE-1.1-DR-0084
							1.3 GHz Superconducting RF ule	LCLSII-HE-1.2-FR-005	52	
81	Number of beamline HOM absorbers	1		one located at the end of each 1.3 GHz cryomodule, one located upstream of the first of the 3.9 GHz cryomodules	SCRF 1.3 GHz Cryomodule PRD	LCLSII-HE-1.2-PR-0029	1.3 GHz Superconducting RF ule	LCLSII-HE-1.2-FR-005	Final Design Report	LCLSII-HE-1.1-DR-0084
1.3 GHz C	ryomodule Magnets	10	0-1/				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
82	cryomodule	10	Gev	for magnet design	SCRF 1.3 GHZ Cryomodule PRD	CLCLSII-HE-1.2-PR-0029				
-	Quadrupole minimum stable	0.5	kG		Magnets PRD SCRF 1.3 GHz Cryomodule PRD	LCLS-II-HE-1.3-PR-0033 LCLSII-HE-1.2-PR-0029	Cryomodule Magnet	LCLSII-4.5-ES-0355	Cryomodule Production Magnets Test	LCLSII-4.5-EN-611
83	operating integrated gradient						Cryomodule Magnet	I CL SIL4 5-ES-0355	Program Performance of Conduction Cooled Splittable	L CL SIL4 5-EN-0578
05									Superconducting Magnet Package for Linea	r
	Quadrupole maximum stable	20	kG	for matching and future upgrades	SCRF 1.3 GHz Cryomodule PRD	LCLSII-HE-1.2-PR-0029			Cryomodule Production Magnets Test	LCLSII-4.5-EN-611
84	operating integrated gradient				Magnets PRD	LCLS-II-HE-1.3-PR-0033	Cryomodule Magnet	LCLSII-4.5-ES-0355	Program Performance of Conduction Cooled Splittable	LCLSII-4.5-EN-0578
•									Superconducting Magnet Package for Linea	r
	Quadrupole gradient stability	0.02	%	ΔK/K, RMS	SCRF 1.3 GHz Cryomodule PRD	LCLSII-HE-1.2-PR-0029	Cryomodule Magnet Power Supply	LCLSII-4.5-ES-0477	Existing similar design power supplies are	
05									stable to 0.01 % of the DC current set point	
00					Magnets PRD	I CI S-II-HE-1 3-PP-0033		I CI SIL4 5-ES-0355		
	Quadrupole maximum unpowered	8	G		SCRF 1.3 GHz Cryomodule PRD	LCLSII-HE-1.2-PR-0029	Cryomodule magnet	202011-4.3-20-0333		
86	residualfield	-	_		, , , , , , , , , , , , , , , , , , , ,		Cryomodule Magnet	I CL SII-4 5-ES-0355		
07	Quadrupole maximum unpowered	few	mG		SCRF 1.3 GHz Cryomodule PRD	LCLSII-HE-1.2-PR-0029	oryomodule magnet			
87	residual field at the nearest cavity									
	b2/b1	0.01		harmonics at 10 mm radius	Magnets PRD	LCLS-II-HE-1.3-PR-0033			Performance of Conduction Cooled Splittable	ELCLSII-4.5-EN-0578
88									Superconducting Magnet Package for Linea Accelerators	r
							Cryomodule Magnet	LCLSII-4.5-ES-0355	Cryomodule Production Magnets Test Program	LCLSII-4.5-EN-611
	b5/b1	0.1		harmonics at 10 mm radius	Magnets PRD	LCLS-II-HE-1.3-PR-0033			Performance of Conduction Cooled Splittable	ELCLSII-4.5-EN-0578
89									Accelerators	
							Cryomodule Magnet	LCLSII-4.5-ES-0355	Program	LCLSII-4.5-EN-611
90	Field flatness ±	vario	cm	depends on location in lattice – see PRD	Magnets PRD	LCLS-II-HE-1.3-PR-0033	Cryomodule Magnet	LCLSII-4.5-ES-0355		
91	Quadrupole magnet aperture	7	cm	larger than the 1.3 GHz cavities	SCRF 1.3 GHz Cryomodule PRD	LCLSII-HE-1.2-PR-0029				
<u>.</u>		50	0		Magnets PRD	LCLS-II-HE-1.3-PR-0033	Cryomodule Magnet	LCLSII-4.5-ES-0355	Defense of Oreduction Orelad Orlittable	
~~	operating integrated gradient	50	Gm		SCRF 1.3 GHZ Cryomodule PRD	CCLSII-HE-1.2-PR-0029			Superconducting Magnet Package for Linea	r
92									accelrators	
					Steering Corrector Magnets PRD	LCLSII-HE-1.3-PR-0037	Cryomodule Magnet	LCLSII-4.5-ES-0355		
	Dipole corrector minimum stable	1	Gm						Performance of Conduction Co	ooled Splittable
93	operating integrated gradient				SCRF 1.3 GHz Cryomodule PRD	LCLSII-HE-1.2-PR-0029			LCLSII-4.5-EN-0578 Supercond Package for Linear	lucting Magnet
	Dipole corrector stability	0.02	%	A@/@. BMS			Cryomodule Magnet Cryomodule Magnet Power Supply	LCLSII-4.5-ES-0355 LCLSII-4.5-ES-047	7 Existing similar design power	
94	. ,				SCRF 1.3 GHZ CI JOIIIOdule PRD	LCL3II-HE-1.2-PR-0029	, , , , , , , , , , , , , , , , , , , ,		supplies are stable to 0.01	
							On an and the Manna of		% of the DC current set point	
					Steering Corrector Magnets PRD	LCLSII-HE-1.3-PR-0037	Cryomodule Magnet	LCLSII-4.5-ES-035		
95	Dipole corrector maximum unpowered residual integrated	2	mG-m		SCRF 1.3 GHz Cryomodule PRD	LCLSII-HE-1.2-PR-0029				
	gradient Quadrupole vibration tolerance, both	0.12	um	Above 10–100 Hz, feedback mitigates effects of lower	Quadrupole Magnet Vibration	LCLS-II-HE-1.3-PR-0062	Cryomodule Magnet 1.3 GHz Cryomodule Technical Description	LCLSII-4.5-ES-0355 LCLSII-HE-1.2-ES	-0060	
96	X and Y		P	frequency motion.	Requirements					
				based on XFEL suggest no amplification of motion at						
				quadrupole at frequencies above beam feedback range. Ground motion coupling to magnet is not expected to						
┣───	Number of quadrupoles per	1		result in excessive vibration	SCRF 1.3 GHz Cryomodule PRD	LCLSII-HE-1 2-PR-0029			Final Design Report	LCL SII-
97	cryomodule					20200112 1.2-1 10-0029			r mar besign report	LOLDII
98	Quadrupole strength for heat load calculations	11	kG	corresponding to beam energy 6 GeV	SCRF 1.3 GHz Cryomodule PRD	LCLSII-HE-1.2-PR-0029			Cryogenic Heat Load	LCLSII-
1.3 GHz C	Position resolution	200	um	for button BPM	Beam Position Monitor	LCLSII-2.4-PR-0136	Cold Button Beam Position	LCLSII-4.5-ES-0403		
99	Charge recolution	1		for button PDM	Poom Position Monitor		Monito Cold Button Room Desition			
100	Chargeresolution	I	рС			LULUII-2.4-7K-U100	Monito	LOLOII-4.0-E0-0403		

	Production y			
			Verification method	
	Documents or	process		
	Resonant excitation of high order modes in	LCLS-II-TN-15-06	Calculation	
	superconducting RF			
	cavities of ECES if infac			
84	Some Wakefield Effects in	LCLS-II TN-13-04	Calculation	
	the Superconducting RF Cavities of LCLS-II			
84	Final Design Report	LCLSII-HE-1.1-DR-0	084 Design studies	
	<u> </u>			
	Final Design Report	LCLSII- 1.1-DR-0251	Design studies	
	Cryomodule traveler		Measurement	
	Chromodule traveler		Measurement	
	Cryomodule traveler		Measurement	
	magnet power supplies	Proceedings of EPAC 2004,	Measurement	
		Lucerne, Switzerland		
		Switzenand		
	Cryomodule traveler		Measurement	
	In Situ Cryomodule	LCLSII- 4.5-EN-0482	Measurement	
	Demagnetization			
	Cryomodule traveler		Measurement	
	Cryomodule traveler		Measurement	
	Cryomodule traveler		Measurement	
	Final Design Report	LCLSII- 1.1-DR-0251	Design studies	
	<u> </u>			
	Cryomodule traveler		Measurement	
	Cryomodule traveler		Measurement	
	SPEAR3 Intermediate DC	Proceedings of	Measurement	
	magnet power supplies	EPAC 2004,		
		Switzerland		
			M	
	Cryomodule traveler		Measurement	
	Quadrupole Vibration	EUROTeV-Report-	Measurement	
	Measurements of a TESLA Type II Cryomodule	2006-036		
	Type II et yelliodale			
	Top Level Assembly	F10009945	Design studies	
	Drawing (Fermilab TeamCenter)			
	Cryogenic Heat Load	LCLSII-4.5-EN-0179	Calculation	
	Final Design Report	LCLSII-1.1-DR-0251	Design studies	
	Final Design Report	LCLSII-1.1-DR-0251	Design studies	
			-	

	Plans and Procedures					
	Document Title: LCLS-II-HE 1.3 GHz Cryomodule Performance					
Requirements and Minimum Acceptance Crit						
	Document Number: LCLSII-HE-1.2-PP-0255-R0	Page 8 of 11				

Sub-							Cryo Systems requireme	nts, specifications, and		Production verification	
System	Parameter	Value	Units	Comment / Cryo Systems implications	Physics requirem	ent documents	interface d	ocuments	Other reference or verification documents	Documents or process	Verification method
101	Stay-clear minimum internal diameter	70	mm		Beam Position Monitor Requirements PRD	LCLSII-2.4-PR-0136	Cold Button Beam Position r	LCLSII-4.5-ES-0403		LCLS-II Cold BPM Assembly	FNAL/Teamcenter Design studies F10023160
102	BPM alignment tolerance	0.5	mm		Beam Position Monitor Requirements PRD	LCLSII-2.4-PR-0136	Cold Button Beam Position r	LCLSII-4.5-ES-0403		LCLS-II Cold BPM Assembly	FNAL/Teamcenter Design studies F10023160
103	BPM drift tolerance	0.2	mm/wee k		Beam Position Monitor Requirements PRD	LCLSII-2.4-PR-0136	Cold Button Beam Position r	LCLSII-4.5-ES-0403		LCLS-II Cold BPM Assembly	FNAL/Teamcenter Design studies F10023160
104	BPM offset tolerance	0.2	mm		Beam Position Monitor Requirements PRD	LCLSII-2.4-PR-0136	Cold Button Beam Position r	LCLSII-4.5-ES-0403		LCLS-II Cold BPM Assembly	FNAL/Teamcenter Design studies F10023160
105	Number of BPMs	1		one per cryomodule, cold button BPMs	SCRF 1.3 GHz Cryomodule PR	D LCLSII-HE-1.2-PR-0029				Top Level Assembly	F10009945 Design studies
105					Beam Position Monitor Requirements PRD	LCLSII-2.4-PR-0136				Drawing (Fermilab TeamCenter)	

		Plans and Procedures				
		Document Title: LCLS-II-HE 1.3 GHz Cryomodule Performa				
		Requirements and Minimum Acceptance Criter				
		Document Number: LCLSII-HE-1.2-PP-0255-R0 Page 9 of 11				
	The boxes below	indicate wh	here the acceptance criteria is verified in travelers			
	L2HE-LERF-CM-A	ACTS and	L2HE-CMA-CM-ASSY (only criteria #22).			
I	Table 2 Prod	uction Cr	yomodule Minimum Acceptance Criteria			
	Parameter		Minimum acceptable performance during test			
1	individual cavity		USABLE Gradient – the maximum gradient at which the following 3 conditions are mot:			
			radiation level is below 50 mR/br Steps 34 44 54 64 74			
		• Tadiation level is below 50 mit/mi, Steps 54, 44, 54, 64, 74				
			 0.5 MV/m below the guench field. 			
2	Nominal usable gradient	20.8	Individual cavities should reach a nominal usable gradient of 20.8 MV/m.			
-	Minimum Lloople CM/ voltors	MV/m	Need to confirm with SLAC.			
	produced by an individual	173 1010	The total CVV voltage produced by cryomodule with cavities running at their usable gradients shall be >173 MV with all cavities powered			
3	cryomodule		simultaneously in GDR/SELAP mode and with the magnet at nominal			
			operating currents for at least one hour with the dark current <30 nA.			
			recorded.			
л	Stable Operation		For cavities that have a usable gradient above 20.8 MV/m, they must also			
4			be shown to be stable (no quenches or trips) at 2 New yes/no field in 32, 42,			
	Captured dark current	<30 nA	Nour. 52, 62, 72, 82, 92, 102			
_		100 11/1	cryomodule at the minimum CW voltage as defined above shall be \leq 30			
5			nA when the cavities are operated in GDR/SELAP mode with the relative			
			phases set to accelerate speed of light electrons. This should be done in such a way to maximize the dark current measured at the E			
6	Individual cavity Q ₀ Not a criteria. Or	nly a measu	rement cavity Q_0 's must be measured at the expected operating gradient			
0	request. Relates	to Criteria	Criteria 8. /m or the usable gradient whichever is lower)			
	Cryomodule operating duration with RE power during test		Each cryomodule must operate at the minimum CW voltage or greater in GDR/SELAP and with the magnet at operating currents until the			
7	The power during test		coupler temperatures achieve equilibrium or for a minimum of ten (10)			
1			hours with 90% operating time, whichever is less to verify stable operation			
	2 K Dynamic Load at 173 MV		and confirm acceptable coupler heating. In the wyeshild in Step 110.			
8	voltage		at total voltage of 173 MV must be \leq 137 W (equivalent to an average Q ₀ of			
	5		2.7x10 ¹⁰). New step between 113 and 114.			
9	Static heat load at 2 K		The static heat load at 2 K must be ≤7 W Step 114			
	Cryomodule thermometry		All installed thermometry shall be verified functional by observing			
	, , ,		consistency in output with operational conditions. For sensors measuring			
10			identical locations on components within a cryomodule there shall be			
			component and under static load with no power applied to the cavities or			
			magnets New step between 115 and 116.			
11	Cavity Microphonics	<10 Hz	The microphonics for each cavity must be 10 Hz peak to Steps 38, 48, 58, 68.			
11		peak to peak	valve regulating the liguid level (not in a locked position) 78, 88, 98, 108			
4.0	Cryomodule liquid level sensors		Liquid level sensors shall be verified functional by observing liquid levels			
12			and changes therein consistent with liquid supply rates and estimated boil-			
	Cryomodule cryogenic valving		OTT rates Interview Step between 115 and 116.			
13		during cryomodule operations by consistency with expectations for				
. •			operational performance, in particular, no valve or actuator is to have ice			
	Cavity tuning to reconcise during		After cool down to 2 K cook cavity must be oble to be typed to a reconcret.			
11	test (coarse tuner)		frequency of 1300.000 MHz. The tuner on the cavity #1 must be able to			
14			change the cavity's frequency from 1299.980MHz to 1300.020MHz.			
			Tuners on cavities #2- #8 must be able to adjust cavity's frequency from			
15	Fine tuner minimum range	0-500 Hz				
10		0.000112				

Plans and Procedures

Document Title: LCLS-II-HE 1.3 GHz Cryomodule Performance

Requirements and Minimum Acceptance CriteriaDocument Number:LCLSII-HE-1.2-PP-0255-R0Page 10 of 11

40	Heater performance		All installed heaters shall be verified functional by meas $45\pm6 \Omega$ at 2 Kelvin. Heaters must be demonstrated function of the helium:	uring resis tional in a	stance of
10			 Six (6) of the eight (8) heaters on the helium vessels Two (2) of the three (3) heaters on fill lines. 	tween 115	and 116
17	Fundamental power coupler 50 K coupler flange maximum temperature	200 K	Both heaters on liquid level units Measured temperature of FPC 50 K coupler flange mus K at the conclusion of the 10-hour full cryomodule run.	t be less the Step 11	han 200
18	Fundamental power coupler warm part maximum temperature	450 K	Measured temperature of FPC warm part must be less conclusion of the 10-hour full cry May not be instrumen	than 450 k ted. Mike I	Cat the D to look into.
19	Cavity HOM coupler rejection of 1.3 GHz power		Q _{ext} ≥ 2x10 ¹¹ , maximum power measured at 1.3 GHz or coupler is 1.7 W at 20.8 MV/m Steps 30, 40, 50, 60, 7	ut of a sing 0, 80, 90,	le HOM
20	Magnet electrical verification		The magnet package shall be verified electrically to be opens, hi-pot test at 500 V with <1 µA under insulating ambient pressure, and can be operated at a current of a minimum of 30 minutes without quenching Step 2	without she /acuum, < at least 18 8 and 29	orts or 5 µA in A for a
21	BPM electrical verification and signal balance		The BPM shall be verified electrically to be without shor cross-talk between electrodes ≤ -30dB. The difference i (S21) between electrodes is < 1dB over a frequency ran GHz	ts or open n S-param nge of 0.5	s, with neter to 2.5
	Cryomodule vacuum		Cryomodule beamline vacuum prior to cooldown	1x10 ⁻⁸	To Step 4
22			Cryomodule warm coupler vacuum prior to cooldown	1x10 ⁻⁷	ToStep 3
			Cryomodule beamline vacuum at 2 K	1x10 ⁻⁹	Tostep 115
			Cryomodule insulating vacuum at 2 K	1x10 ⁻⁶	Τc
			Cryomodule warm coupler vacuum at 2 K	5x10 ⁻⁸	Td
		1			

Table 3 Verification cryomodule minimum acceptance criteria, with performance requirement validated for each criteria, and associated production workstation

	Criteria	Validates:	Workstation
1	Cavity beamline vacuum Cold (2K) 1x10 ⁻¹⁰ Torr Warm (room temperature) 1x10 ⁻⁸ Torr	Vacuum pumping and leak determination	WS 1 – CR Assembly
2	Center Frequency 1.300000 GHz +/- 20kHz	Cavity Fabrication Target frequency	WS 1 – CR Assembly
3	Individual cavities reach at least 20.8 MV/m	Overall Design and Assembly Validation, cavity doping recipe	WS 1 – CR Assembly
4	Field emission onset ≥ 16 MV/m for each cavity individually	Particle Free Assembly	WS 1 – CR Assembly
5	The BPM shall be verified electrically to be without shorts or opens, with cross-talk between electrodes \leq -30dB. The difference in S-parameter (S21) between electrodes is < 1dB over a frequency range of 0.5 to 2.5 GHz.	BPM design and assembly	WS 1 – CR Assembly

Plans and Procedures

Document Title: LCLS-II-HE 1.3 GHz Cryomodule Performance Requirements and Minimum Acceptance Criteria

Document Number: LCLSII-HE-1.2-PP-0255-R0

Page 11 of 11

6	Individual cavity $Q_0 \ge 2.7 \times 10^{10}$ at 20.8 MV/m after a fast cool down	Magnetic Hygiene and Shielding, cavity doping recipe	WS 2/3
7	HOM $Q_{ext} \ge 2x10^{11}$, maximum power measured out of a single HOM is 1.7 W at nominal gradient of 20.8 MV/m.	HOM notch tuning	WS3
8	After cool-down to 2 K, each cavity must be able to be tuned to a resonant frequency of 1300.000 MHz. The tuner on the cavity #1 must be able to change the cavity's frequency from 1299.980MHz to 1300.020MHz. Tuners on cavities #2- #8 must be able to adjust cavity's frequency from 1299.535 MHz to 1300.020MHz.	Tuner design	WS3
9	The magnet package is verified electrically to be without shorts or opens, hi-pot test at 500 V with <1 μ A under insulating vacuum, <5 μ A in ambient pressure, and can be operated at a current of at least 20 A without quenching	Magnet Installation	WS3
10	Nominal FPC $Q_{ext} = 6x10^7$ with range verified from $1x10^7$ to $8x10^7$	FPC/CM design verification	WS3
11	Average CM $Q_0 \ge 2.7 \times 10^{10}$ measured as a total dynamic 2 K heat load of ≤ 137 W at 173 MV total accelerating voltage, after at least 10 hours c.w. operation or until the FPC temperature reaches equilibrium	Magnetic hygiene and shielding, cavity doping recipe	WS2-5 – Final Assembly
12	Stable operation at the minimum CW voltage or greater in GDR/SELAP and with the magnet at operating currents for an extended run of 2 weeks with 90% operating time, documenting all trips.	LLRF system/Resonance control, accelerator operation	WS1-5