Vector Home

LCLS-II High Energy (HE) 1.3 GHz Nine Cell Dressed and Undressed Cavity 2K VTS Testing (RFCHE)

<u>464504 Rev. C</u>

Series	Serial No.	Job No.	Task No.	Released By	Released Date	Status
RFCHE	CAVR090-3	584	See Job Page	Andrew Cravatta	2/8/2023 3:48:52 PM	Closed

1.0 Abstract

- 2.0 General Notes
- 3.0 Supporting Documentation
- 4.0 Process Readiness Verification
- 5.0 Testing and Results
- 6.0 Process Completeness Verification
- 7.0 Process/Production Complete

1.0 <u>Abstract</u> <u>Top</u>

1.1 This traveler is to be used during the Nine Cell Dressed or Undressed Cavity 2K VTS Testing for the LCLS-II High Energy (HE).

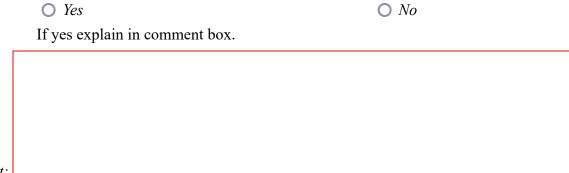
2.0 General Notes Top

2.1 Follow the requirements in the appropriate General Cavity Procedures.

3.0 <u>Supporting Documentation</u> <u>Top</u>

3.1 Electronically attach all appropriate memos, specific instructions, digital photographs, discrepancy reports and other documentation in the appropriate step in this traveler.

Note: Additional files can be attached to a traveler by clicking on the step number, then selecting Insert Attachment from the Traveler's Step Tools Menu


4.0 Process Readiness Verification	on <u>Top</u>		
4.1 Verify the current location of the cavity.			
Cavity Location: 🗸			
O VTS 1	• VTS 2	O VTS 3	
Technician: 🗸		Date:	
4.2 Responsible Authority MUST verify the	following process has been c	completed and signed-off by the process Author	ity.

Verify the cavity process has been completed in Traveler 464240 and signed-off by the process Authority.

Comments:			
Responsible	Authority/Designee:	Date:	

4.3 Is this a re-test?

Comment:

5.0 <u>Testing and Results</u> <u>Top</u>

5.1 Test Operator, and Date.

Principal Test Operator: Andrew Cravatta Test Date: 2/3/2023

5.2 Cool down Parameters.

Enter the temperature gradient between top and bottom when bottom transitions trough Tc.

Temperature Gradient K

5.3 Test Parameters.

Dewar Number 3		
Top Plate Number: 3		
Top Plate Ports: Pi 2		
<i>Pt 2</i>		
HOM A 3		
HOM B 4		
Dewar Bath Temperature is 2K 🗹		
Dewar Bath Temperature if different from 2K:	K	
Isolated from stand?	HOM Feedthroughs?	He vessel?
○ Yes	• Yes	Yes

Cavity Flange type:

Flange at FP side	Flange at FPC side		
💿 NbTi	💿 NbTi		
O SS	\bigcirc SS		

Magnetic Fluxgate:

Standard locatio	n of Fluxgates 🗹	
If not comment:		
Maximum field a	t room temperature before cool-down	mG

5.4 Network Analyzer.

Cavity Frequency: 1300.214442 MHz 8/9 Cavity Frequency: 1299.452954 MHz 7/9 Cavity Frequency: 1297.221007 MHz 6/9 Cavity Frequency: 1293.842451 MHz 5/9 Cavity Frequency: 189.71116 MHz 4/9 Cavity Frequency: 1285.326039 MHz 3/9 Cavity Frequency: 1281.317287 MHz 2/9 Cavity Frequency: 1277.985839 MHz 1/9 Cavity Frequency: 1275.821313 MHz

5.5 Calibration.

Calibration constants:

Ci: 3584.9

```
Cr: 18579.9
Ct: 212.3
CHOMA 1011.8
CHOMB 955.2
```

Comment if Ci, Cr, Ct were re-measured during the test:

5.6 Decay Measurement.

If BETA>1 cavity is overcoupled. If BETA<1 cavity is undercoupled.

Cavity Coupling:

• Overcoupled

○ Undercoupled

Qext1 2.16e10 Qext2 1.68e12

Q HOM A **4.97e12** *Q HOM B* **1.29e13**

Comment if Qext1, Qext2, Q HOM A, Q HOM B were remeasured during the test:

The accepted ranges for antennas Q-factors are: o 1.8e10 <= Q1 <= 3.2e10 o 7.5e11 <= Q2 <= 2.5e12 o QHOM >= 2.7e11

5.7 CW Measurement. at 2K.

Check if radiation was detected \square

Select all that applies:

• Field emission \Box

• 7π /9 🗹

Eacc @ 7π/9 19 MV/m

Check if measurement was stopped because radiation could not be processed away \Box

NOTE: No field-emission-induced radiation should be detected up to the maximum gradient. Any multipacting must be fully processed before the final Q vs Eacc measurement.

 E_{acc} @ quench 27.3 Highest Eacc @ Q = 2.5e10 27.3 The usable gradient (the lowest of the above E_{acc} 27.3 NOTE: Max gradient must be >= 23 MV/m

$Q_0, 10^{10}$

Maximum 3.22 Eacc at Maximum Q0 17 At E_{acc} of 20.8 MV/m 3.14 $P_{HOM}A$ When $E_{acc} = 20.8$ MV/m 0.0935 $P_{HOM}B$ When $E_{acc} = 20.8$ MV/m 0.0361 NOTE: The accepted values @ Eacc = 20.8 MV/m are: • Q0 >= 2.5e10 • PHOM <= 1.7 W

5.8 Cavity Performance Summary.

Maximum radiation (after all processing): Rad_{max}: 0 mR/hr Comment on Performance Limitation: Quench field: 27.3 MV/m. No MP, FE, or rad.

Comment on Multipacting, if Applicable:

5.9 Upload Files.

RF data (text file): Link AUX Data File 1: Upload File AUX Data File 2: Upload File AUX Data File 3: Upload File

Responsible Authority/Designee: Andrew Cravatta

Date: 2/8/2023

6.0 <u>Process Completeness Verification</u> <u>Top</u>

6.1 Responsible Authority MUST ensure this Traveler is complete, all specifications are met and the device is ready for the next process.

Vector - Read Only: CAVR090-3---464504 Rev. C --- LCLS-II High Energy (HE) 1.3 GHz Ni...

• Qualified

Comment -

Responsible Authority/Designee: Daniel Bafia

Cavity Destination:

 \mathbf{v}

7.0 Process/Production Complete

Other

Technician:

6.2 Select the next destination for the cavity. If the option "Other" is chosen from the drop box, please type the location in the text field below the drop box.

• Need reprocessing

Top

Note: This section to be filled out by Process Engineering.

 \mathbf{v}

7.1 Verify the Traveler is accurate and complete. Personnel shall conduct a review of all steps to ensure all operations required have been completed/signed off by required personnel. Ensure all Discrepancy Reports, Non-Conformance Reports, Repair/Rework forms, Deviation Index and dispositions have been reviewed and followed by the Responsible Authority before being approved/completed.

Comments: -

Process Engineering/Designee: Richard Motill

7/1/2024, 10:23 AM

○ Rejected

Date: 2/8/2023

Date: 2/22/2023

Date: