# Capture Cavities for the CW Polarized Positron Source Ce<sup>+</sup>BAF\*

S. Wang<sup>†</sup>, J. Grames, N. Raut, R. Rimmer, Y. Roblin, A. Ushakov, H. Wang Jefferson Lab, Newport News, USA

#### Abstract

The initial design of the capture cavities for a continuous wave (CW) polarized positron beam for the Continuous Electron Beam Accelerator Facility (CEBAF) upgrade at Jefferson Lab is presented. A chain of standing wave multicell copper cavities inside a solenoid tunnel are selected to capture positrons in CW mode. The cavity shunt impedance is surveyed by tuning the cavity geometry while considering accomodating large phase space distribution positron beam with large beam pipe radius and ensure the large enough passband mode separation. The RF field wall loss power and maximum wall loss power density are considered in cavity and waveguide design. A range of design parameters are given for larger system optimization when the the capture cavities are considered together with thermal calculation and beam dynamics in next phase of work.

### **INTRODUCTION**

The Jlab's CEBAF accelerator provides high energy spinpolarized electron beams, in addition, Jlab is now exploring an upgrade which would provide high energy spin polarized positron beams to address new physics [1, 2]. The PEPPo (Polarized Electrons for Polarized Positrons) technique is adopted [3] to generate the positrons. Here the spin polarization of an electron beam is transferred by polarized bremsstrahlung and polarized e+/e- pair creation within a high-power rotating tungsten target. A high current >1 mA spin polarized CW electron beam is produced, accelerated to an energy of 120 MeV and transported to the high-power target to generate the spin polarized positrons. A capture section, including a solenoid tunnel, shield and capture cavity will collect positrons to maximize intensity or polarization. Afterward the positrons will be separated from electrons by a chicane and further accelerated in the super conducting cavities to 123 MeV. The positrons are then accelerated by CEBAF accelerators to 12 GeV to any of the four halls. The Ce+BAF design is optimized to provide users with spin polarization >60 % at intensities >100 nA, and with higher intensities when polarization is not needed.

#### **CW CAPTURE LINAC**

On the target, the positron source has small transverse dimensions, large angle aperture and broad energy spread resulting from the shower processes and from the multiple scattering. A QWT is chosen as the matching device between the source and the capture accelerator which has bigger geometrical acceptance and smaller angular because of narrow band final energies. The beam size is increased and the beam occupies the geometrical acceptance at the entrance of the capture cavity. The RF capture section is used to increase the capture efficiency by decreasing the longitudinal energy spread as well as improve the transverse beam emittance. The whole capture linac is encapsulated inside a solenoid. It is employed to focus the positrons and avoid losses while the RF accelerating field provides the longitudinal compression.

Because the capture Linac will be located inside the solenoid magnetic field, copper cavity will be used. One special point of the Ce<sup>+</sup>BAF is that it provides CW positron beams. Obviously, the copper cavity will also need to work in CW mode. Then the copper cavity wall loss power becomes a big challenge, which limits the crucial parameter, the RF field gradient greatly. In Travelling Wave (TW) capture cavity implementation, the decelerating mode in the first capture cavity was proposed in 1979 by Aune and Miller [4] and applied later to improve the capture rate. This is not efficient in CW operation mode where gradient is very precious. So we are going to use Standing Wave (SW) cavities.

In general, high-gradient and large-aperture cavities are required to ensure sufficient longitudinal and transverse acceptance for the positron beams. But with given RF wall loss power, the maintained RF field gradient is lower with larger iris aperture, the shunt impedance is lower. A large iris aperture also allows the high order modes to propagate out. The choices of the iris aperture and the available gradient need to be weighed and balanced with beam dynamics analysis. Variation of geometry of the RF cavities along the capture path is expected to maximize the capture rate.

In the starting part of the capture process, the electron bunches are coincided with positron bunches. The beam loading effect is alleviated by the beam current cancelation. Later of the electrons will be bunched at its own acceleration phase, half-RF wavelength away from positron bunches, as indicated in Vallis' simulation [5]. With the addition of beam loss in the capture process, hence the ending part of the capture Linac will see different beamloading. Different FPC coupling factors will be needed for the RF cavities.

<sup>\*</sup> Work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.

# **CAPTURE CAVITY DESIGN**

## Strategy

This is a RF cavity design for a larger project in development. We are not aiming to produce a set of "optimized" parameters for the cavity design with given inputs from other parts of the project, which is not available during the evolvement process of the whole project. In stead, with high-performance computing power available nowadays, a matrix of cavity designs can be produced, which can be used to do further studies combined with beam dynamics tracking, RF and radiation thermal calculation, focusing solenoids and cooling design to pursue the best performance of the whole system. At the same time, this kind of survey work is also beneficial for similar CW normal conducting cavity design for other project.

As mentioned above, to obtain as high as possible the gradient is crucial, and we also want large iris aperture. Because it will be a multi-cell cavity, we also make sure mode separation near  $\pi$  mode is large enough for possible high beamloading operation. Multi-cell cavties with two types of cell shapes are investigated, type A with simpler structure, larger cell-to-cell coupling, and type B with nose cone, higher shunt impedance are illustated in Fig. 1. The correlation between the various geometry parameters and the shunt impedance, mode separation are surveyed. This set of cavity design works as a database for capture process beam dynamics analysis, particle shower radiation thermal analysis in next work phase.



Figure1: Cell shapes

## Multi-Cell Cavity

The frequency of the RF cavity is 1497 MHz, same as CEBAF. The cell number of the multi-cell cavity is chosen to be 11 to balance between the required RF power for each cavity, flexiblity of the Linac configuration, over all effective gradient and mode separation near  $\pi$  mode. The gradient and phase from cavity to cavity could be used to tune the capture rate in later beam capture process analysis. But this cell number is not fixed, could be changed in small range later.

Two waveguide are symmetrically connected to the middle cell of the cavity. Currently only a basic FPC design is performanced, a taper waveguide and cavity-to-waveguide iris connet the waveguide to the cavity, as shown in Fig. 2. It will be updated lated when more detailed beam loading information becomes available. Initial result show that the maximum power density near waveguide iris won't be the limiting factor of the gradient.



Figure 2: Example of an 11-cell capture cavity

The cell geometry survey start with a structure of inner cells, as shown in Fig. 3. It has three resonators and is much simpler compared to the full cavity. The three calculated modes of this structure will give the cell-to-cell coupling information and mode separation near  $\pi$  mode for the multi-cell cavity can be derived. In the survey, when the geometry parameters is varied during the parameter scanning, the  $\pi$  mode resonance frequency drifts away from 1497 MHz, we need to move it back by tuning the parameter scanning and the optimization at each parameter setting, which greatly improves the efficiency.

For both types of cavities, the center-cell and the two end cells are not identical to the inner cells, their equator radius are tuned so the field levelness can be achieved. Then full cavity model is obtained.



Figure 3: Inner cell structure for geometry survey

# Inner-Cell Geometry Survey

For type A cell cavity, the iris radius, equator ellipse axis lengthes and cell wall thickness are varied. For type B cell cavity, the iris radius, nose gap length, nose cone angle, nose cone tip straight height and equator ellipse axis lengthes are varied. The shunt impedance and mode separation near  $\pi$  mode are recorded for each setting. The results are shown in Fig. 4. For the shunt impedance, we can see that, the iris radius has the most significant impact for both types of cavities. The shunt impedance of type B cavity is higher then that of type A cavity, but not significant for cases with iris radius larger than 30 mm. Nose cone tip and gap in type B cavity also change the impedance noticebly. The equator radius also influences the impedance for both type of cavities. The cell wall thickness doesn't contribute much. For 1 MV/m gradient, RF power about 50 kW is needed per cavity. Type A cavity has much higher mode separation near  $\pi$  mode than type B cavity. Decreasing the cell number in type B cavity can help widen the mode separation near  $\pi$  mode.











Figure 4.c: Shunt impedance vs equator radius, type B cell



Figure 4.d: Mode separation near  $\pi$  mode, type A cavity



Figure 4.e: Mode separation near  $\pi$  mode, type B cavity

### CONCLUSION

A parameter survey for two types of standing wave capture cavities has been performed for CW positron source. Different cavity geometry can be chosen for further beam dynamics and thermal analysis in the next phase of work. The survey results are also valuable for other applications with CW copper cavities.

## ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.

#### REFERENCES

- [1] J. Grames, etc, Status of positron beams at Jefferson Lab (Ce+BAF), see this proceeding
- [2] A. Ushakov, Simulations of Positron Capture at Ce+BAF, see this proceeding
- [3] D. Abbott et al., "Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies," Phys. Rev. Lett., vol. 116, p. 214 801, 2016. doi:10.1103/PhysRevLett.116.214801
- [4] B. Aune, R.H. Miller, New Method for Positron Production at SLAC, SLAC-PUB-2393, USA, 1979.

[5] N. Vallis , etc, "Proof-of-principle e + source for future colliders", PHYSICAL REVIEW ACCELERATORS AND BEAMS 27, 013401 (2024)