Estimate the Radiation for Hall-B Polarized Target Design Using FLUKA

Jixie Zhang July 5, 2017

Hall-B Double-Cell Polarized Target

Project Description

Hall-B double-cell polarized target:

1. Beam:

90 days 11 GeV beam at 10nA current. Circle raster with 1.9cm diameter

2. Materials that the electron beam will see(from James):

-Entrance window to helium bath: 0.015"(0.0381cm) Aluminum
-Helium bath (0.5cm-1mil)
-entrance window of cell 1: 0.001"(0.00254cm) Aluminum
-target material (60% NH3, 40% liquid Helium, 2cm in length)
-exit window of cell 1: 0.001"(0.00254cm) Aluminum
-Helium bath (3cm-2mil)
-entrance window of cell 2: 0.001"(0.00254cm) Aluminum
-target material (60% NH3, 40% liquid Helium, 2cm in length)
-exit window of cell 2: 0.001"(0.00254cm) Aluminum
-target material (60% NH3, 40% liquid Helium, 2cm in length)
-exit window of cell 2: 0.001"(0.00254cm) Aluminum
-Helium bath(0.5cm-1mil)
-exit window of bath: 0.001"(0.00254cm) Aluminum
-heat shield: 0.001"(0.00254cm) Aluminum
-exit window from target: 0.015"(0.0381cm) Aluminum

Geometry in FLUKA

Values might need to know:

- 1. Thickness of the pipe connected to the nose, I am using 0.5" now.
- 2. Thickness of the nose itself; I am using 0.04" now.

I did not add 5T target field. Since the radiation mainly come from neutron or photon, This field will not affect the radiation result.

Geometry in FLUKA (Zoom in)

Accumulated Damage

area with R<20cm.

-300

-200

-100

0

100

Z (cm)

200

300

400

500

600

Accumulated Damage (Zoom in)

1MeV-Neutron-Eq-Damage to Silicon -200 < Z < -180 1e+16 🖴 20 < Z < 0Z < 20 1e+14 \triangle 1 Mev-Nu-Eq/cm3 \triangle 1e+12 1e+10 1e+08 1e+06 10 20 35 15 25 30 40 R (cm)

90 days, 11 GeV beam with 10nA current 1cm each bin.

Conclusion:

It is safe to place detector at any location with R>5 cm. Of course it should not block the outgoing particle from reaching CLAS12 detectors.

Jixie Zhang, UVA

Heat Load in Target

10nA beam @ 11 GeV

Conclusion:

The heat power in target is ~0.0055 w/cm^2.

For 1.9 diameter raster size, the total heat loan in each target cell is ~0.0312 watt.

Activation Map @ 1 hour (2D)

Dose Rate from Activation

Conclusion: Negligible everywhere. No need to worry about activation.

Summary

1) FLUKA simulation has been performed Hall-B double-cell polarized target assuming 11 GeV beam with 10nA beam current for 90days. I did not use 5T target field since it will not affect the radiation result in this project.

2) The accumulated 1MeV neutron equivalent damage to silicon for area with Z<20cm and R>5cm is below 10^13. It will be safe to place detectors or electronics in this area.

3) Heat load in target is about 5.5 mili-watt per cm^2, or about 31.2 mili-watt for each target cell.

4) Dose rate from activation is negligible everywhere.