Monte Carlo Simulation of the PRad Experiment at JLab¹

Li Ye Mississippi State University for the PRad collaboration

¹.This work is supported in part by NSF MRI award PHY-1229153, the U.S. Department of Energy under Contacts No. DE-FG02-07ER41528, Thomas Jefferson National Laboratory, Mississippi State University and PRad collaboration

Outline

- PRad Physics goals
- Experimental setup
- Monte-Carlo Simulation
- GEANT4 geometry and beam profile
- Background study and subtraction
- Summary

The Proton Charge Radius Puzzle

Existing data : 1.electron-proton elastic scattering measurements 2.lamb shift measurements in atomic hydrogen 3.lamb shift measurements in muonic hydrogen

- Muonic hydrogen Lamb shift experiment at PSI (2010,2013)
- r_p = 0.84184(67) fm Unprecedented less than 0.1% precision
- ~ 7.9 σ discrepancy from most of previous experimental results and analyses

The PRad Experiment (E12-11-106) The experiment completed data taking during May-June 2016

- Experimental goals:
 - reach very low Q² range (~ 10 times less than the Mainz experiment)
 - reach sub-percent precision in r_p extraction
- Novel Techniques Used:
 - Non-magnetic-spectrometer method: use high resolution high acceptance calorimeter and high position resolution GEM detector
 - reach smaller scattering angles: ($\Theta = 0.8^{\circ} 7.0^{\circ}$) (Q² = 2x10⁻⁴ - 1x10⁻¹) GeV/c² essentially, model independent r_p extraction
 - 2) Simultaneous detection of $ee \rightarrow ee$ Moller scattering
 - (best known control of systematics)
 - 3) Use high density windowless H2 gas flow target:
 - beam background fully under control with high quality CEBAF beam
 - minimize experimental background
 - Two beam energies: $E_0 = 1.1 \text{ GeV}$ and 2.2 GeV to increase Q² range: (2x10⁻⁴ 1x10⁻¹) GeV/c²
 - Will reach sub-percent precision in r_p extraction

PRad Experimental Setup (schematics)

More details at WeiZhi Xiong's talk in the same section

- High resolution, Hybrid calorimeter (Magnetic Spectrometer Free)
- Windowless, high density H2 gas flow target (Reduced backgrounds)
- Simultaneous detection of elastic and Moller electrons (control of systematics)
- Vacuum box, one thin window, large area GEM chambers (improved resolution)
- Q² range of $10^{-4} 6 \times 10^{-2}$ GeV² (lower than all previous electron scattering expts.)

Monte-Carlo Simulation

- A thorough simulation of the experiment to identify possible sources of background is important to achieve sub-percent precision in the cross section measurement and proton radius extraction.
- A simulation code for the target and the calorimeter was developed based on GEANT4
- Event generators with radiative corrections of e-p and e-e scattering were also developed.

GEANT4 geometry and beam profile

• Target, made of Kapton

- Cylindricaltube open at both ends and a gas inlet neck

• Calorimeter, central part of HyCaL

- 34×34 PbWO₄ crystal modules with four removed at the center
- Dimension of each module: 2.05×2.05×18cm³
- Energy resolution 2.6%/ \sqrt{E} , position resolution 2.5mm/ \sqrt{E}

• Electron beam, 15days of beam time

- 1.1 GeV, 2.2 GeV or higher energy
- A uniform halo of 10⁻⁷ relative to the peak was included.

DNP meeting, vancouver, Oct. 2016

GEANT4 Simulation Geometry

Flange(window Coupling) : material Al, outer diameter 2.3", inner diameter 1.3",

Adapter: material Fe, outer diameter 1.62", inner diameter 1.245",

Quick Disconnect big: material Fe, outer diameter 2", inner diameter 1.39",

Quick Disconnect small: material Fe, outer diameter 1.62", inner diameter 1.39",

Beam Pipe:

material Fe, outer diameter 1.375", inner diameter 1.245", note: the beam pipe is all the way connect to the Adapter in the simulation

Background from Beam Flange

Background from Beamline and Flange

Backgrounds From the Beamline Flange

 Background from rescattered Moller events concentrated in first angle bin, around ~2.1% of data.

- Background events as a function of distance from flange to HyCal PbWO₄ surface.
- Total backgrounds on HyCal ~120Hz

Background from GEMs

Total background in experiment: (HyCal trigger) ~200Hz @ 1.1GeV no target ~350Hz @ 1.1GeV empty target cell and chamber ~550Hz @ 2.2GeV empty target cell and chamber higher than simulation due to residual gas from upstream beamline

Material: G10, Kapton foils, copper, Ar, CO2 ~~0.5% radiation length G10 Frame : 1.5cm ~~7.5% radiation length Distance from Hycal surface : 30cm

Summary

- The primary background source is from the residual gas and beamline, empty target subtraction will help reduce the background.
- A larger Q² coverage is helpful to the radius extraction in this experiment, the expected uncertainty of the extracted radius is less than 1%.
- Radiative corrections are implemented in the simulation.
- Background simulation study helped to make better design of vacuum box window, connection flange and pipe.

