

Next Steps for PRad Analysis

Maxime Levillain

North Carolina A&T State University

for PRad Collaboration

January 28, 2017

PRoton Radius

- 1 The Proton Charge Radius
- **2** PRad Setup
- 8 Plan of Analysis
- **4** Yields and Normalization
- **5** Radiative Corrections

6 Conclusion

The Proton Charge Radius Puzzle

4 different methods to measure the proton charge radius

 $\blacktriangleright \sim 8\sigma$ discrepancy between muonic hydrogen spectroscopy and atomic hydrogen measurements

Model dependent fitting of G_E to extract r_p

< JSA

ep Scattering

ENERGY

- Previous measurements have large systematic uncertainties and a limited coverage at small Q^2
- Requirements for PRad Experiment:
 - ▶ large Q² range
 - extend to very low Q²
 - controlled systematics at sub-percent precision
- Extraction of $\langle r^2 \rangle = -6 \cdot \frac{dG_E^p}{dQ^2} \Big|_{Q^2=0}$ through:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \frac{E'}{E} \frac{1}{1+\tau} \left(G_E^{p2}(Q^2) + \frac{\tau}{\epsilon} G_M^{p2}(Q^2)\right)$$

Phys. Rev. C 93, 065207

Maxime Levillain

PRad Timeline

- 2011 2012 Initial proposal
- 2012 Approved by JLab PAC39
- 2012 Funding proposal for windowless H_2 gas flow target
- 2012 2015 Development, construction of the target
- 2013 Funding proposals for the GEM detectors
- 2013 2015 Development, construction of the GEM detectors
- 2015, 2016 Experiment readiness reviews
- January/April 2016 Beam line installation
- May 2016 Beam commissioning
- May 24 May 31 Detectors calibration
- June 4 June 15 1.1 GeV data taking
- June 15 June 22 2.2 GeV data taking

ALS

PRad Setup

- \blacktriangleright Electron beam or tagged photon beam at $\sim 1 \mbox{ GeV}$ and $\sim 2 \mbox{ GeV}$
- Windowless H_2 gas flow target
- Vacuum box

< JSA

- GEM detectors
- Primex HyCal

▶ Same analysis chain for *e*− data and Monte-Carlo

 Progress of analysis around background substraction and event separation

Maxime Levillain

U.S. DEPARTMENT OF

AL)

 Total yields are subtracted from residual interaction upstream and downstream the target

Weizhi Xiong

Møller and ep Separation

 Møller and *ep* events can be separated down to 0.7 ° for the 1.1 GeV data set and for any angle for the 2.2 GeV data set

8 / 11 Jefferson Lab

ton

Maxime Levillain

U.S. DEPARTMENT OF

-JSA

- Møller and *ep* yields are taken in the same conditions and will be corrected with the same acceptance
- $\rightarrow\,$ Normalization of cross-section possible

$$N_{ep,normalized} = N_{ep,data} \cdot rac{N_{M ilde{ extsf{w}}ller,MC}}{N_{M ilde{ extsf{w}}ller,data}}$$

- After acceptance correction, two different cross-sections can be calculated:
 - σ_{ep,normalized}
 - $\sigma_{ep,MC}$ depending on the G_E theoretical distribution and on the radiative correction model

- The PRad experiment was uniquely designed to address the Proton Radius Puzzle
- ▶ The experiment was successfully performed in May-June 2016
- Detector studies finalized (still working on improvements)
- The planned physics analysis is on progress

Thanks to JLab, Hall B, Accelerator Division and Target Group

PRad is supported in part by NSF MRI award PHY-1229153, as well as DOE awards for GEM; my research work is supported by NSF awards: PHY-1506388 and PHY-0855543 $\,$

