

GEM Detectors for Proton Charge Radius (PRad) Experiment

Xinzhan Bai

University of Virginia

for PRad Collaboration

Jan. 28th, 2017

Contents

- PRad Setup
- GEM Detector
- Cluster Reconstruction
- Detector Alignment
- Position Resolution
- Detection Efficiency
- Summary

Xinzhan Bai

2

PRad Experimental Setup

- PRad Experiment designed to measure proton charge radius with sub-percent precision, to address the Proton Radius Puzzle.
- Using GEM detector improves position resolution by a factor of 20 40.
- The combination of HyCal and GEM delivers powerful performance.

3

- Desired Sensitive Area: 116.4 x 116.4 cm²
- Central Hole: diameter 4.4cm, including the frame max allowed
- Maximum allowable nonsensitive region 7.8 x 7.8 cm²

The World's largest GEM chambers

PRad GEM Design

- Actual sensitive area: 120 x 102.6 cm²
- Actual non-sensitive area: 7.4 x 7.4 cm²

PRad GEM Detector in UVa clean room

UNIVERSITY JIRGINIA

Triple GEM Detector

Challenges encountered:

- Large area, difficult to keep the space between each gem foil to be 2mm.
- Longer Strips, higher noise level.
- Biggest foil ever made.

Xinzhan Bai

APS 2017

4

PRad GEM Construction

- Designed and constructed at UVa in 2015.
- Installed in Hall B beam line at JLab in 2016.

Two chambers, overlap in the central part. with a central opening hole for beam.

Chamber mounted on HyCal in Hall B

Xinzhan Bai

5

UNIVERSITY of VIRGINIA

PRad GEM DAQ

APS 2017

6

Xinzhan Bai

Cluster Reconstruction

- Mostly relativistic electrons.
- Minimum Ionization Particles (MIP).
- Only one layer of GEM detectors, no tracking.
- No timing information.

Υ

- Challenge to match X-Y clusters.
- An experiment-dependent clustering method.

Readout plane

MUNIVERSITY of VIRGINIA

Jefferson Lab

HyCal

Y project

Y_{measure}

Yoffset

GEM2

 y_{origin}

Ζ1

Detector Alignment

dz

X-Y Offset:

- Using overlapping area events.
- Project GEM1 coordinates to GEM2.
- Take the difference of projected value and measured value.

Beam position monitoring by GEM

Beam position monitored by GEM detectors in different runs

- Beam position important to the experiment.
- Using moller events to find beam position.
- Allows us to continuously monitor beam position upto 0.05mm level.

UNIVERSITY of VIRGINIA

9

Detector Resolution

Using overlapping area e-p events to check resolution.

Procedures to check spatial resolution:

- Correct offsets.
- Project GEM1 coordinates to GEM2.
- Find statistical width.
- Assume two chambers have the same resolution:

Xinzhan Bai

Detection Efficiency

Efficiency from e-p events:

- 1), Select e-p events from HyCal.
- 2), Match gem clusters.
- 3), # GEM cluster / # HyCal cluster.

Efficiency from Moller events:

- 1), Select moller events from HyCal.
- 2), Match gem clusters.
- 3), # GEM cluster / # HyCal cluster.

Preliminary average efficiency:

E-p: 92.4% +/- 0.03%

- Dead area not excluded.
- Expected to be even better after finer calibration from both HyCal and GEM.

GEM efficiency in each sector from 2.2 GeV ep events

GEM detection plane was divided into small square sectors,

Estimate efficiency for each sector area.

Xinzhan Bai

Detection Efficiency

Efficiency from e-p events:

- 1), Select e-p events from HyCal.
- 2), Match gem clusters.
- 3), # GEM cluster / # HyCal cluster.

Efficiency from Moller events:

- 1), Select moller events from HyCal.
- 2), Match gem clusters.
- 3), # GEM cluster / # HyCal cluster.

Preliminary average efficiency:

E-p: 92.4% +/- 0.03%

- Dead area not excluded.
- Expected to be even better after finer calibration from both HyCal and GEM.

Xinzhan Bai

Estimate efficiency for each sector area.

APS 2017

Overlapped area

Detection Efficiency

Efficiency from e-p events:

- 1), Select e-p events from HyCal.
- 2), Match gem clusters.
- 3), # GEM cluster / # HyCal cluster.

Efficiency from Moller events:

- 1), Select moller events from HyCal.
- 2), Match gem clusters.
- 3), # GEM cluster / # HyCal cluster.

Preliminary average efficiency:

E-p: 92.4% +/- 0.03%

- Dead area not excluded.
- Expected to be even better after finer calibration from both HyCal and GEM.

Xinzhan Bai

Estimate efficiency for each sector area.

Performance

scattering energy E' vs scattering angle θ

- Coordinates from GEM detectors
- Cluster energy from Calorimeter.

Xinzhan Bai

14

Summary

- Two new large area GEM detectors built for PRad experiment to significantly enhance spatial resolution.
- Detector performed well, delivered designed requirements
 - a), High position resolution achieved.
 - b), High average efficiency, stable with time.
- World's largest GEM detectors.
- Data analysis in progress

This work was supported in part by NSF MRI award PHY-1229153, the U.S. Department of Energy Under Contract No. DE-FG02-03ER41231, No. DE-FG02-03ER41240 and Thomas Jefferson National Laboratory.

