

Current Results of the PRad Experiment at JLab

Maxime Levillain

November 17, 2017

Outline

The Proton Radius Puzzle

PRad Setup

Detectors Performances

Analysis

Summary

Outline

The Proton Radius Puzzle

Different Methods of Measurement Elastic *ep* Scattering New Experiment Needed

PRad Setup

Detectors Performances

Analysis

Summary

Measurements of Form Factors

- ▶ First measurement at SLAC in 1961 through *ep* scattering
- ▶ 60 years of measurements, 4 possible different methods

Atomic Hydrogen Spectroscopy

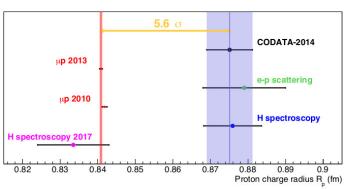
Lamb shift measurements by MPQ and LKB

ep Scattering

Accelerator based experiments at Mainz, SLAC, JLab, etc

Muonic Hydrogen Spectroscopy

Lamb shift measurements by CREMA


μp Scattering

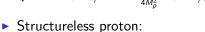
Future experiment PSI/MUSE

The Proton Radius Puzzle

elastic scattering
$$r_p(e^-)=0.8751\pm0.0061 fm$$
 muonic spectroscopy $r_p(\mu^-)=0.8409\pm0.0004 fm$ atomic spectroscopy $r_p(e^-)=0.8335\pm0.0095 fm$

Discrepancy between spectroscopy and atomic hydrogen scattering measurements

Elastic *ep* **Scattering**

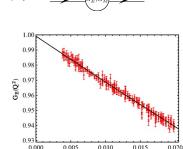


► Elastic cross-section in the limit of the first Born approximation:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \frac{E'}{E} \cdot \frac{1}{1+\tau} \cdot (G_E^{n2}(Q^2) + \frac{\tau}{\epsilon} G_M^{n2}(Q^2))$$

with:

With:
$$Q^2=4EE'\sin^2\!\theta/2$$
 $au=rac{Q^2}{4M_p^2}$ $\epsilon=1/(1+2(1+ au) an^2 heta/2)$

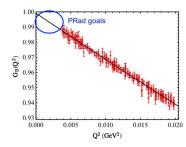

$$\left(rac{d\sigma}{d\Omega}
ight)_{Mott} = rac{lpha^2(1-eta^2 ext{sin}^2 heta/2)}{4k^2 ext{sin}^4 heta/2}$$

▶ G_E can be expressed using a Taylor expansion at low Q^2 :

$$G_E = 1 - \frac{Q^2}{6} < r^2 > + \frac{Q^4}{120} < r^4 > + \dots$$

which gives:

$$< r^2 > = -6 \cdot \frac{dG_E^p}{dQ^2} \Big|_{Q^2 = 0}$$


Phys. Rev. C 93, 065207

O2 (GeV2)

The PRad Experiment

- Previous measurements have large systematic uncertainties and a limited coverage at small Q^2
- Requirements for PRad Experiment:
 - ► large Q² range (two orders of magnitude)
 - extend to very low $Q^2 (2 \cdot 10^{-4} \text{ GeV}^2)$
 - controlled systematics at sub-percent precision
- Choices:
 - Non magnetic spectrometer method
 - No target windows
 - high resolution high acceptance spectrometer
 - Normalization by Møller cross-section

Phys. Rev. C 93, 065207

PRad Timeline

•	2011 - 2012 2012	Initial proposal Approved by JLab PAC39
•	2012	Funding proposal for windowless H_2 gas flow target
•	2012 - 2015	Development, construction of the target
•	2013	Funding proposals for the GEM detectors
•	2013 - 2015	Development, construction of the GEM detectors
•	2015, 2016	Experiment readiness reviews
•	January/April 2016	Beam line installation
•	May 2016	Beam commissioning
•	May 24 - May 31	Detectors calibration
•	June 4 - June 15	1.1 GeV data taking
•	June 15 - June 22	2.2 GeV data taking

Outline

The Proton Radius Puzzle

PRad Setup

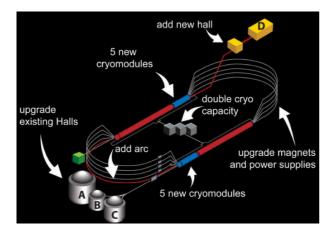
JLab Facility
PRad Setup
Windowless Gas Flow Target
Hybrid Calorimeter
GEM detectors

Detectors Performances

Analysis

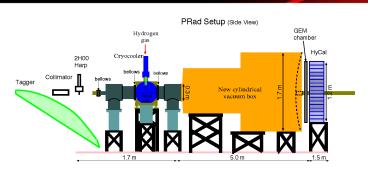
Summary

JLab Facility



PRad was performed in Hall B at JLab

JLab 12GeV Upgrade



► First experiment finished using 12 GeV accelerator (not at full beam energy)

PRad Setup

- \blacktriangleright Electron beam or tagged photon beam at ~ 1 GeV and ~ 2 GeV
- ▶ Windowless *H*₂ gas flow target
- Vacuum box

- GEM detectors
- Primex HyCal

Windowless H₂ Gas Flow Target

- gas target of cryogenically cooled hydrogen at 19.5 K
- beam opening: 2 mm, length: 4 cm
- cell density: $\sim 2 \cdot 10^{18} \text{ H atoms/cm}^2$
- pressures:
 - ▶ cell pressure: 471 mTorr
 - chamber pressure: 2.34 mTorr
 - vacuum chamber pressure: 0.3 mTorr

Developed and build by JLab target group



Vacuum Box

- ▶ 1.7 m diameter, 2 mm aluminum vacuum window
- ightarrow Limited background

Primex HyCal

Hybrid detector:

- ► Central part:
 - ▶ 34 x 34 matrix of PbWO₄ detectors
 - ▶ dimension of block: 2 x 2 x 18 cm³
 - 2 x 2 blocks removed from the center for beam line to pass through
- Peripheral part:
 - ▶ 576 lead glass detectors
 - dimension of block: 4 x 4 x 45 cm³
- ▶ 5.8m from the target
 - \rightarrow scattering angle coverage: $\sim 0.6^{\circ}$ to 7.5°
- Successfully used for Primex experiments



GEM Detectors

- ▶ Two large area GEM detectors: 55 cm x 123 cm
- Purpose:
 - improve spatial resolution by a factor 20 to 40 \rightarrow < 75 μ m
 - \rightarrow to reduce uncertainties on θ and Q^2
- Central overlap between the 2 planes and central hole for the beam line

Developed and build by UVA

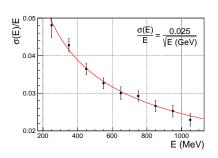
Outline

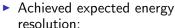
The Proton Radius Puzzle

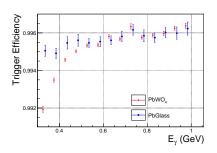
PRad Setup

Detectors Performances

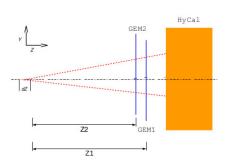
HyCal Performances
Detector Position Calibration
Cosmic Selection
GEM Performances

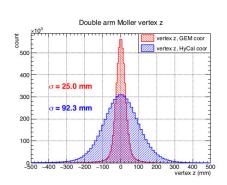

Analysis


Summary


HyCal Energy Resolution and Efficiency

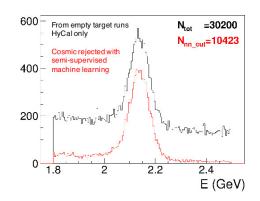
- 2.5% at 1 GeV for PbWO₄
- ▶ 6.1% at 1 GeV for Pbglass



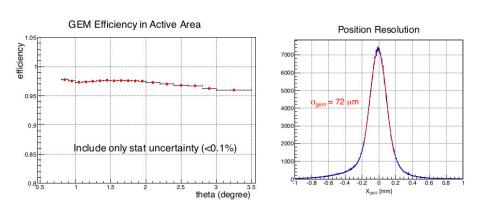

► Plateau from 500 MeV with an efficiency 99.5%

Detector Position Calibration

- ► Detector offsets and z position determined using double-arm Møller events
- lacktriangle Offset with $\sim 50 \mu \mathrm{m}$ and z with 1 mm precision



Cosmic Events



- Most cosmic events rejected from matching GEM and HyCal
- Negligible at small angle thanks to high event race
- Different algorithms to further reject cosmics:
 - Using empirical variables: cluster profile/size
 - Machine learning methods

GEM Performances

- ► GEM detection efficiency measured in both photon beam calibration (pair production) and production runs (ep and ee)
- ► GEM resolution measured using overlap region ($< 75 \mu m$)

Outline

The Proton Radius Puzzle

PRad Setup

Detectors Performances

Analysis

Stability

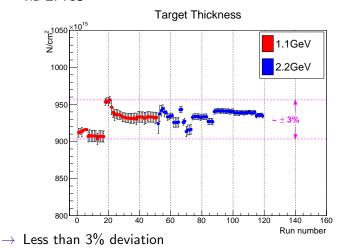
Background Study

Event Selection

Cross-sections

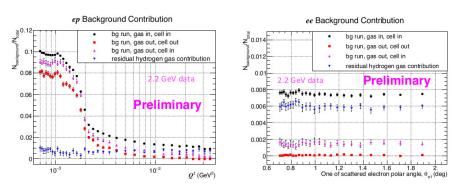
Summary

Data Collected


- Calibration with tagged photon beam
 - Every calorimeter module moved into the beam
 - ▶ Allows study of resolution, linearity, trigger efficiency
- ▶ 1.1 GeV electron beam
 - ▶ 4.2 mC
 - ▶ 604 M events with target
 - 53 M events with "empty target"
 - 25 M events with ¹²C target for calibration
- 2.2 GeV electron beam
 - ▶ 14.3 mC
 - ▶ 756 M events with target
 - ▶ 38 M events with "empty target"
 - ▶ 10.5 M events with ¹²C target for calibration

Target Stability

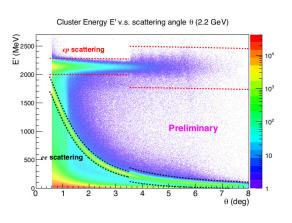
 Control of target properties (pressure, temperature, position) via EPICS



Weizhi Xiong

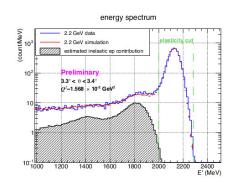
24 / 32

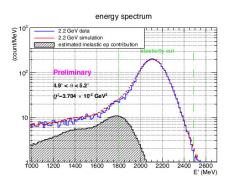
Background Subtraction



- ightharpoonup ep background $\sim 10\%$ at forward angle and < 2% otherwise
- ee background $\sim 0.8\%$

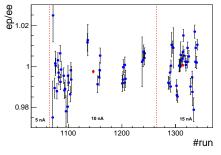
Event Selection

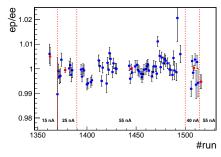

- Matching hits between HyCal and GEMs
- For ep and ee events, angle dependent energy cut (resolution depending on HyCal region)
- For ee events, double-arm selection with additional cuts:
 - Elasticity
 - Co-plnarity
 - Vertex z


26 / 32

Inelastic ep Contribution

- Two different generators (one inclusive and one for exclusive pions)
- ► Expected contribution < 0.1% in PbWO₄, $\sim 3.5\%$ for PbGlass 2.2 GeV and < 1% for PbGlass 1.1 GeV





Yields Stability

 Stability of ratio ep/ee after background subtraction for different beam intensity

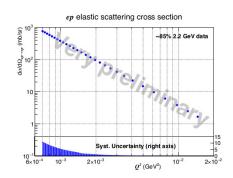
Good stability for the 2GeV period

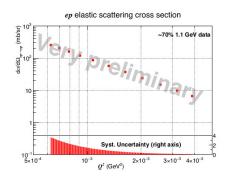
Extraction of Cross-section

▶ Normalization of *ep* cross-section by Møller cross-section:

$$\left(\frac{d\sigma}{d\Omega}\right)_{ep} = \frac{\textit{N}_{exp}(ep \rightarrow ep \ in \ \theta_i \pm \Delta\theta)}{\textit{N}_{exp}(ee \rightarrow ee)} \cdot \frac{\epsilon_{geom}^{ee}}{\epsilon_{geom}^{ep}} \cdot \frac{\epsilon_{det}^{ee}}{\epsilon_{det}^{ep}} \cdot \left(\frac{d\sigma}{d\Omega}\right)_{ee}$$

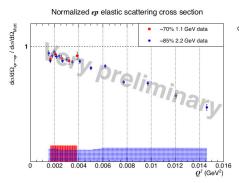
- Several event generators have been developped for ep and Møller scattering taking into account complete calculations of radiative corrections beyond ultra relativistic approximations
 - ▶ A. V. Gramolin et al., J. Phys. G Nucl. Part. Phys. 41(2014)115001
 - ▶ I. Akushevich et al., Eur. Phys. J. A 51(2015)1
- Geant4 is used to take into account all external radiative effects


$$\sigma_{ep}^{\textit{Born}} = \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{\textit{exp}} / \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{\textit{sim}} \cdot \sigma_{ee}^{\textit{Born}}$$



Preliminary ep Cross-section

- ▶ Preliminary *ep* cross-section for the 2.2 (1.1) GeV data set
- ▶ Statistical uncertainties at $\sim 0.18\%$ ($\sim 0.3\%$) per point
- ightharpoonup Conservative point-to-point systematic uncertainties at $\sim 1.3\%$



30 / 32

Preliminary Electric Form Factors

 Differential cross-section normalized to Mott cross-section ► Proton electric form factor *G_E*

Proton Electric Form Factor G_E

-70% 1.1 GeV data
-85% 2.2 GeV data

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.01

0 0/2 (GeV²)

Summary

- ▶ The *Proton Radius Puzzle* is still unresolved
 - New converging spectroscopy results needs some confirmation from other experiment
 - Further experiments preparing for μp scattering (MUSE, COMPASS)
- The PRad experiment was uniquely designed to address this puzzle
 - ▶ Wide range of Q^2 without normalization on more than two orders of magnitude $(2 \cdot 10^{-4} \text{ GeV}^2 \text{ to } 6 \cdot 10^{-2} \text{ GeV}^2)$
 - ▶ Lowest Q^2 data set of ep elastic scattering $(2 \cdot 10^{-4} \text{ GeV}^2)$
- ▶ Very preliminary cross-section, covering $Q^2 \in [6 \cdot 10^{-4}, 1.5 \cdot 10^{-2}]$ GeV²

Thanks to JLab, Hall B, Accelerator Division and Target Group

PRad is supported in part by NSF MRI award PHY-1229153, as well as DOE awards for GEM; my research work is supported by NSF awards: PHY-1506388 and PHY-0855543

32 / 32