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Abstract

The values of fundamental physical constants are crucial for testing
current theories and their possible extensions. It is not widely appre-
ciated that determining the constants is quite sensitive to how data and
theory are selected, and how theoretical and experimental uncertainties
are treated. There exists no universal definition of the best procedures
or constants. Procedures dedicated to finding constants with the highest
possible precision generally select data that confirms the theory. Contrary
to perceptions, the theory is not tested at the same level as the uncer-
tainties of fitted parameters. The uncertainties found under a given pro-
cedure also cannot reliably constrain parameter variations from different
procedures. Determining physical constants cannot consistently be done
piecemeal, but needs global fits incorporating the shifting relationships
between theory and data. An important example comes from high preci-
sion data for muon physics. A circular process has previously excluded
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muonic proton and deuteron charge radius data from global fits to the
constants, creating a false perception those data represent a disagreement
between data and theory. When the excluded data are included, we find
their effects improve the global fit to all constants: And there are many
other examples. We claim it is scientifically productive to include generic
alternatives in global fits, if only to test sensitivity to their effects. Since
all the constants are coupled, it is generally necessary to re-do global fits
to place self-consistent limits on alternative theory parameters, or make
discovery claims. Yet the procedural universe where QED and Standard
Model theory are defined to be exact permits no alternatives. We pro-
pose a new mechanism where dependence on data selection, theory, and
procedural decision can be explored community-wide. We constructed
Constant Finder (http://www.constantfinder.org), a comprehensive auto-
mated code and user interface available to anyone via the website with
the same name. The site allows users to make their own procedural de-
cisions, adjust experimental and theoretical values and uncertainties, and
pose alternatives to theory within several global data-fitting frameworks.
Anyone interested can determine the fundamental constants on the basis
of data, uncertainties, and theory inputs of their choosing.

1. The Present Worldview of Fundamental Constants

The nature of fundamental constants has evolved tremendously. It was possible
once to think fundamental physical constants were self-defining experimental
quantities not needing a theory. Since the onset of QED, fundamental constants
no longer define themselves. Physical constants get their definitions and their
meaning from the theory where they are used. Theory was transformed by the
emergence of the Standard Model. The definitions of the fundamental constants
were transformed again, while the names stayed the same.

The electron mass me now refers to a parameter in the Dirac sector of
the Lagrangian of the Standard Model. Its definition makes no mention of
~F = me~a, and nothing about Newtonian physics should appear in the param-
eter’s determination. The electron charge e now has three distinctly different
definitions. Nothing about the 19th century force on an electron is relevant.
When the Dirac Lagrangian is written in one way –as initially done in atomic
physics and QED – it appears that e is an independent fundamental parameter.
Sommerfeld noticed the dimensionless combination α = e2/4πε0~c appearing
in perturbation theory. At the time it appeared that all of e, ~ and c were needed
separately. When QED is written a different way, e disappears, and the fine
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structure constant is revealed as an independent fundamental parameter. Mean-
while the names “electron mass, charge and fine structure constant” tend to be
retained in an intellectual perspective developed at Sommerfeld’s time or before.

The modern era of high precision measurements has created a new situa-
tion in fundamental physics. The main scientific reason to concentrate on high
precision constants is to test theory and explore theoretical alternatives. Posing
scientific alternatives is not mere speculation: Science exists by posing alterna-
tives. An alternative theory does not change one constant, but generally disrupts
the network of relationships involved in the global determination of many con-
stants. Yet this is not generally understood: Most of the time, a new experiment
or a new theory variation will deal with one constant that gets attention, as if
determining the other constants were independent, and written in stone.

Scientists generally assume that tables of fundamental constants have been
determined with extreme objectivity. Yet compiling fundamental constants is a
form of data analysis. There are no universal rules for data analysis, while there
are sensible guidelines. The actual decisions scientists make depend on the field
they happen to inhabit.

Decisions can cause constants to be evaluated on the narrowest possible
grounds. Yet dealing with fundamental constants piecemeal leads to inconsis-
tencies. For example, high precision comparisons between theory and exper-
iment for the electron’s anomalous magnetic moment are claimed to severely
limit alternatives. Yet a change in the theory, either from a new contribution
or a change in the calculation, can greatly exceed the nominal uncertainty. One
reason is that such a change revises the value of α, which must be re-determined
self-consistently. The amount of weight given to such comparison is not a pre-
ordained scientific question: It depends on more information than available from
the exercise of making a fit.

The relationships between fundamental constants and data is a topic of in-
terest to everyone in physics. The freedom to explore assumptions should be
available for everyone to explore. We will discuss a new and open process for
exploring fundamental constants. The technology exists to automate the ex-
ploration. We have developed an on-line computer code, called the Constant
Finder, that allows anyone interested to determine fundamental constants on the
basis of data, uncertainties, and theory inputs selected by the user. It is very
interesting to find how much depends on judgment and decisions that are not
widely appreciated.
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1.1. Processing Information Is Conditional on Information

Fitting fundamental constants to data is conditional upon information available
at a given time, and how it is used.

In general a likelihood function P (data|θ) describes the probability of data
given parameters θ. A least-squares fit finding a reasonable value of χ2 is a
typical likelihood, subject to assumptions that should be specified. For example,
if a good value of χ2 depends on adjusting theory or experimental uncertainties
until a good value is found, the conditions should be divulged.

The likelihood of data, given a parameter, is not actually useful until related
to P (θ|data), the probability of the parameters given the data. This sort of
probability is subtler than repeating a determination many times and counting
frequencies. The importance of prior information and its weight is paramount.

For example, one might have an unshakable faith in the validity of perturba-
tive QED, believing that the higher the order of approximation, the more perfect
the theory. Actually theory finds such faith is not justified. Perturbative calcu-
lations with Feynman diagrams do not produce a convergent series. The series
at best is asymptotic. Such a series approaches the true answer as the parameter
(coupling constant) goes to zero for a fixed number of terms. The physical limit
is different: It uses a fixed coupling, and a variable number of terms. In the
physical limit an asymptotic series will begin to diverge for a certain number of
terms. That is, adding more terms can make the calculation worse. Given this
information there are reasons to be cautious in interpreting theory calculations.
Estimates of theoretical uncertainties are related, but actually a separate issue.
Estimates often seem reasonable in advance of calculations. When calculations
are later done, theory uncertainties are often found to be underestimated.

Decisions appear at every step. What is better science?: To report the most
precise values possible to find for a fundamental constant, while excluding data
degrading precision, or to find the most robust value of the constant, using all
the information available? It depends on the application. For more than 50 years
the US Department of Commerce has contributed to the former aim. According
to Ref [3]:

The Committee on Data for Science and Technology (CODATA) was established in
1966 as an interdisciplinary committee of the International Council of Scientific Unions
(now the International Council for Science). Three years later CODATA created the task
group on fundamental constants to periodically provide the scientific and technological
communities with a self-consistent set of internationally recommended values for the
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Figure 1. The Rydberg constant is reported very precisely, and also highly con-
tested. The green points show the uncertainty of CODATA global fits versus
time, which use the proton charge radius rp from electron scattering. The red
point is an analysis using rp from muonic hydrogen[1], combined with one ex-
perimentally precise 1S2S transition of electronic hydrogen. The central value
of the red point is also seven standard deviations from the last green one. Anal-
ysis and graphics from Ref. [2].
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basic constants and conversion factors of physics and chemistry.

It is important to know that the function of CODATA is not directed at sci-
entific exploration. CODATA member Savily Karshemboim explains the dis-
tinctions [4]:

Physicists serve as experts only while decisions are made by authorities. The SI
system has been created for a legal use and trade rather than for scientific applica-
tions...We (physicists) do not care about actual SI definitions partly because we do not
consider seriously the legal side of SI...

The charge of CODATA (henceforth abbreviated C) assumes that QED the-
ory is exact. This appears repeatedly in C reviews, and the fundamental con-
stants determined on that basis enforce it consistently. It is reiterated when
C10 writes “Nevertheless, our main purpose here is not to test physical theory
critically, but to obtain ’best’ values of the fundamental constants.” Perfection
requires selection: When discrepancies degrade precision sufficiently, the dis-
crepancies are omitted from the analysis. For example, the measured muon
magnetic moment parameter aµ disagrees with theory by 3.9σ[5]. Retaining it
would degrade the uncertainty of α. On page 1549 C10[6] writes that it “has de-
cided to omit the theory of aµ from the 2010 adjustment,” while its experimental
value is kept for determining the muon mass most precisely, which causes no
discrepancy. But if the data is wrong the muon mass will be wrong. Such deci-
sions are necessary and appropriate for the mission, but one mission cannot fit
all purposes.

A different mission statement is found with the collaboration known as the
Particle Data Group (PDG). The first Review of Particle Physics of 1957 has
grown to an annual report that is the top-cited reference in high-energy physics.
While the PDG reviews values of physical constants, no particular efforts are
made to create final, recommended best values. For example the table listing
limits on the photon mass[7] has about 22 values from 22 sources spanning 40
years. The style of the PDG is well suited to research areas where scientists tend
to follow and update their own choices from the literature, while assuming that
experiments and theory are not exact.
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1.2. Objectivity Is Difficult: Scheme Dependence Matters

The role of judgment and decisions in determining fundamental constants can-
not be overemphasized. Denying it would be tantamount to wanting the “elec-
tron mass ” or “electron charge” to be defined by 19th century experimental
definitions. Theory no longer tolerates circular determinations of fundamental
constants by selecting the “best” data. The concept contradicts consistent use of
renormalized parameters. Just to be clear, the infinities of perturbation theory
associated with “renormalization” are a side issue. The procedures got great at-
tention early because arbitrary conventions entered. But fundamental constants
depend on a theory, and implementing the theory involves arbitrary decisions.
Renormalization fundamentally consists of consistently keeping track of deci-
sions fitting data in one circumstance, so they are respected faithfully in another
circumstance.

The exact definitions used to determine a set of parameters are intrinsically
arbitrary. This is not obvious until one does the work. The procedural conven-
tions are called scheme dependence. The fundamental constants as compiled in
tables come with multiple forms of scheme dependence that include decisions
on methods of fitting, the treatment of experimental and theoretical uncertain-
ties, the selection of observables and data, and more. Somewhere in the list
is the scheme dependence of ultraviolet cutoffs. It must be consistent between
(say) the non-relativistic conventions of atomic physics and spectroscopy, and
the explicitly Lorentz invariant methods used for (say) anomalous magnetic mo-
ments. The theorists are competent: They know about scheme dependence. Yet
the history of events produced fundamental constants with no mention of ultra-
violet scheme dependence, outside the parameters of high energy physics.

Precision experiments also have an element of scheme dependence. Experi-
mentalists must decide what precise signal obtained under what highly particu-
lar circumstances from a given apparatus will be reported. Different conventions
will yield different results. Don’t tell us that every experimental variation pro-
duced exactly the same result! Nothing about fundamental constants is carved
in stone.

Yet there is currently little overall consensus on the extent to which pro-
cedural dependence should be reported. For example, some experimental pa-
pers awarded immense impact on high precision constants are four-page letters
with just a few paragraphs of description, never followed by full-length reviews.
Other works may come with exhaustive reviews and many doctoral dissertations
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providing abundant details. Science is a living thing and quite inconsistent. The
irregularity of reporting details undermines the faith that might be given to re-
ported uncertainties. Yet the user of fundamental constants imagines on faith a
process that was magnificently objective. On an objective basis no information
should be a final authority, and all is a starting point for discussion. Nothing
should depend on faith: Anyone interested in the details or alternatives should
be free to explore them.

Figure 2 shows the recent history of published determinations of α[8] as a
function of time. For each jth determination, the y-axis shows the subsequent
difference (αj+1−αj)/∆̄αj , where the reported uncertainties are σαj , with the
average ∆̄αj = σαj+1 + σαj+1. Error bars are 103∆̄αj . The reasons for the
fluctuations are discussed in Section 4.3.
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Figure 2. Time dependence of determinations of the fine structure constant [8].
For each jth determination in the year shown, the y-axis shows the subsequent
difference (αj+1−αj)/∆̄αj , where the reported uncertainties are σαj , with the
average ∆̄αj = (σαj+1 + σαj+1)/2. Error bars are 103∆̄αj .
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1.3. The Need for a Vehicle for Discussion

At the present time the community has little or no mechanism encouraging
discussion. Consider the electron and muon anomalous moment parameter
ae = (ge − 2)/2, where ge is the Landè g-factor. What are the effects on
the value and uncertainty of α upon doubling the parameter’s experimental er-
ror? Experimentalists at the Large Hadron Collider have generally agreed on a
criterion of five standard deviations to announce a discovery. We mentioned the
Brookhaven data for the muon anomalous moment disagrees with calculations
by 3.9 units of the estimated uncertainty[5]. But on what basis is the statement
of a 3.9σ disagreement made? Since 3σ discrepancies are not so rare in science,
is the discrepancy meaningful? What if the uncertainty in α is adjusted one
way, and the experimental measurement uncertainty adjusted another way: Will
it be impossible in principle to reconcile the data? Such questions should not
be considered idle speculation. Testing the Standard Model is very important.
The scientific method involves posing alternatives, where the size of error bars
should be just as subject to challenge as anything else.

Table 1. A few examples of best fits to fundamental constants using the
Constant Finder when data is selectively removed. Parentheses list the

standard uncertainties. Removing ae has negligible effect. Retaining aµ
while doubling its experimental uncertainty (?) while removing ae and λe

has negligible effect. It does revise the central value of α significantly
(Section 3.3). Removing aµ altogether reduces χ2 by nearly 16 units. Table

6 shows many other examples.

Omit χ2
tot dof

none 27.5 17
µH 25.1 16
µD 27.3 16
ae 27.3 16

ae, λe; ? 27.5 15
aµ 11.8 16

Since each specialized group excels within its own sphere, many physicists
assume each constant is determined by a group that cares about it. There is
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a complacency to let the specialists settle their own concerns. Some will be
amused or interested to hear of the number of digits known for α or the Rydberg
constant R∞, without caring about it further. Yet a crisis among the fundamen-
tal constants has come about and been hidden in plain sight. Physics does not
have a generally accepted theory that explains all high precision data. Rumors
that the Standard Model is in 100% accord with all data come from rejecting
some of the data. See Table 1 extracted from Table 6 in Section 3.3, which has
the details. The table shows how the χ2 statistic of a basic global fit changes
when the data are included, or removed. Removing the muon anomalous mo-
ment parameter aµ improves χ2 by nearly 16 units, which is usually considered
significant. However removing aµ makes χ2/dof → 11.8/16, which is smaller
than expected statistically, and potentially as significant as finding χ2 too big.
If one wants to keep aµ the table shows one way to do it.

The electron anomalous moment parameter ae is often reported to be deci-
sive. Yet removing it causes an entirely negligible change in χ2. It is sometimes
reported that muonic hydrogen and deuterium data disagree with the Standard
Model, which is called the “proton size” problem. The table shows the change
in χ2 is not significant when removing the µH , µD data. The perception of an
inconsistency comes partly from decisions excluding selected muonic data so as
to maintain continuity in the value ofR∞ compared to its previously determined
value.

Thus the “absolute best determinations” of α, R∞, the anomalous magnetic
moments of the electron and muon, the proton’s charge radius rp, its mass and
the electron mass, are not mutually consistent with the QED theory where they
are evaluated. Yet this statement depends critically on the central values and
uncertainties of the data used in the analysis. It also depends on the system
for evaluating information, which over time developed a gap in the scientific
method.

The gap in fundamental constants has allowed no mechanism for an in-
formed physicist to personally investigate the science behind the constants.
Physicists should be allowed to know the consequences that input assumptions
have on outputs. Instead of using (say) 21 transitions of atomic hydrogen or
deuterium with certain reported uncertainties, one can use five, or one. The
consequences of retaining one most precise experimental point –whose theoret-
ical uncertainty is thousands of times larger than the experimental one– can be
explored by adjusting the inputs, and examining the outputs. The electron and
muon anomalous moments can be varied in value and uncertainties, to explore
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the global consequences on, say, the Rydberg constant. When data or assump-
tions change, the Constant Finder code will reflect the consequences in a few
milliseconds. The code has been validated by producing it in two independent
versions, on two different machines, and exhaustively comparing it to previous
work. So far this code is a prototype with limited scope that serves as a proof
of principle. In the future, however, more ambitious and user-friendly versions
can fill the gap in the needs of working physicists.

Section III reviews the online code and provides examples of how it works.
Section II provides background on the presently configured logical relations be-
tween the values of the fundamental constants. That Section will demonstrate
the inherently global nature of fits to the constants. Unless assumptions are
so mild as to have no consequences, it is almost never consistent to introduce
one updated datum, or revise one theory element, and maintain self consistency
at the level given by published tables. For example, the relationships between
QED and the constants are such that the theory is not tested at the highest pre-
cision that is reported. The relationships are not definitively tested by the next
most stringent data items. The tests of theory and experiment come in the over-
all consistency of global fits with many potentially subjective decisions. Our
accomplishment is to democratize the freedom to make procedural decisions,
given published information, which had previously existed only for specialists
in the field.

2. Background on Data and Procedures

A Lagrangian field theory will have one parameter for every term not predicted
by a symmetry. The Standard Model including neutrino masses has 26 param-
eters, which consist of 20 quark and lepton masses and mixing angles, three
gauge coupling constants, two parameters of the Higgs sector, and the speed of
light c.

Some authors include a strong CP violating parameter θQCD, whose in-
terpretation is ambiguous, while most omit c by choosing units where c = 1.
However the speed of light is an observable parameter of the universe. Regard-
less of the units, all agree there exists a particular upper limit on the speed of
massive objects in this universe1. The computational convenience of choosing

1One can also define separate fundamental length and time scales, with e.g. the size of the
hydrogen atom and the frequency of a muonic atom.
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c = 1, and the technological convenience of defining the length unit with a ref-
erence value for c, happen to be completely independent issues. Yet due to the
arbitrariness of units the number for c is not informative in the current theory.

Table 2. Experimental data used in default global fits of this paper.
Standard Model physics is assumed. Data from Refs.

[9, 10, 11, 12, 5, 2, 13, 14].

Experimental datum [units] Experimental value σexpt

νH(2S1/2− 8S1/2) [Hz] 7.70649350012000× 1014 8600
νH(2S1/2− 8D3/2) [Hz] 7.70649504450000× 1014 8300
νH(2S1/2− 8D5/2) [Hz] 7.70649561584200× 1014 6400
νH(2S1/2− 12D3/2) [Hz] 7.99191710472700× 1014 9400
νH(2S1/2− 12D5/2) [Hz] 7.99191727403700× 1014 7000
νH(2P1/2− 2S1/2) [Hz] 1.05784500000000× 109 9000
νH(2S1/2− 2P3/2) [Hz] 9911200000 12000
νH(2P1/2− 2S1/2) [Hz] 1057862000 20000
νD(2S1/2− 8S1/2) [Hz] 7.708590412457× 1014 6900
νD(2S1/2− 8D3/2) [Hz] 7.708591957018× 1014 6300
νD(2S1/2− 8D5/2) [Hz] 7.708592528495× 1014 5900
νD(2S1/2− 12D3/2) [Hz] 7.99409168038× 1014 8600
νD(2S1/2− 12D5/2) [Hz] 7.994091849668× 1014 6800
νD(2P1/2− 2S1/2) [Hz] 1059280000 60000
νD(2S1/2− 2P3/2) [Hz] 9912610000 300000
νD(2P1/2− 2S1/2) [Hz] 1059280000 60000
ae 0.00115965218072 2.8× 10−13

aµ 0.00116592089 6.3× 10−10

∆ELS(µH) [meV] 202.3706 0.0023
∆ELS(µD) [meV] 202.8785 20.0034
λe [m]/10−12 2.4263102367 1.1× 10−9

Nowadays the fundamental constants are partitioned into those used for high
precision work and the rest. High precision work typically involves the con-
stants listed in Table 2. In most of the discussion here we assume fitting Stan-
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dard Model theory with parameters θj = (α, R∞, rp), along with the deuteron
charge radius analog rd when spectroscopic deuterium data is included. The
choice of what data to include and how to incorporate theory uncertainties is
quite important.

Notice that not all experimental inputs are known to great precision: The
value of the proton and deuteron charge radii, in particular, are controversial at
the few-percent level. For reasons we will explain those values and uncertain-
ties are highly correlated with R∞. The Rydberg also depends sensitively on
α and the electron Compton scale2 λe = h/mec. Ultimately c/λe is the fun-
damental frequency scale dominating the spectra of atomic physics. Finally α
is exquisitely sensitive to the electron anomalous moment parameter ae. It is
not self-consistent to “test QED” by comparing α and calculations of ae. The
exercise itself fits a parameter while testing nothing: The actual tests involve
other quantities, which are inextricably linked in a global network.

2.1. Choosing a Global Analysis

There are three basic levels to a conventional least-squares fit. The most basic
one fits a conventional χ2 statistic

χ2 =
∑
j

(dj − tj(θ`))2

σ2
j

. (1)

Here dj and tj stand for the jth instances of data and theory values depending
on parameters θ`. The symbol σj stands for the experimental uncertainty. It is
easy to show that χ2 is the log-likelihood of a product of Gaussian distributions
with argument (dj − tj(θ`) and width parameters σj . The maximum likelihood
fit coincides with minimizing χ2.

The next most elaborate procedure, sometimes called “χ2 with pull”, intro-
duces additive offsets δj whose effects are regulated by additional terms:

χ2
δ =

∑
j

(dj − tj(θ`)− δj)2

σ2
j

+
∑
j

(δj − δ̄j)2

σ2
δj

. (2)

This represents the likelihood incorporating a model of prior information about
the data and theory. To be specific, let the distribution of data given parameters

2The Compton wavelength or “quantum of circulation” refer to equivalent quantities. Neither
me nor h has been determined with the precision typically needed for precision atomic physics.
However their uncertainties are 100% correlated, and cancel in me/h.
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f(dj |θ`, δj) = exp(−(dj − tj(θ`)− δj)2/σ2
j , up to a normalization. Let δj be

distributed like f(δj) = exp(−(δj − δ̄j)2/σ2
δ−j). Then the log-likelihood L of

the parameters given the data is

L = log
∏
j

f(dj |θ`, δj)f(δj) =
∑
j

log(f(dj |θ`, δj)) + log(f(δj)),

which gives Eq. 2. Integrating out the δj parameters in such a distribution
effectively replaces σ2

j → σ2
j + σ2

δj in the denominator of Eq. 1, equivalent to
“adding errors in quadrature.”

The additive offsets serve more than one purpose. They are a common way
to represent theory uncertainties, including un-calculated terms of the theory
(which despite perceptions of QED, are not all known at the same order of
approximation). The offsets can also signal potential issues with data. When
Eq. 2 is minimized directly, the physical parameters and additive offsets δj are
fit at the same time, creating a sort of microscope into the fitting process.

However the process can be extremely sensitive to the widths σδj . By in-
spection each term from the theory can be fit trivially when δj are large enough,
which is always possible with sufficiently large σδj . That creates an opportu-
nity to tune final results with potentially subjective nuisance parameters. It is
neither wrong nor dishonest, but represents a Bayesian element that always ex-
ists in data analysis. However if outputs are discovered to be very sensitive to
procedural decisions that information should be divulged. We have found that
arbitrary (but also, justifiable) procedural decisions often significantly affect the
fit results, which led us to the publicly usable code concept.

The next most elaborate analysis will introduce correlation parameters into
the Gaussians. Either this produces minor changes in outcomes, or major ones.
When many correlation parameters are introduced the possibility for sensitivity
to procedural decisions is greatly increased. If major effects from such decisions
are found, it increases the need to understand and report the reasons for them.
All three methods can be used in any combination in our online code, as detailed
in Section III.

2.1.1. Allowing a Theoretical Alternative

The history of physics shows that progress requires comparing alternatives. In
early celestial mechanics the gravitational potential was modified with one pa-
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rameter to 1/r1+ε, simply to have an alternative. Later General Relativity pro-
vided a more complete theory, at first considered to be an alternative to Newto-
nian gravity. Then high-precision discrepancies of the older theory, such as the
precession of Mercury’s perihelion, became consistency tests of the new the-
ory. Permitting almost any alternative model often improves data analysis for
rather subtle reasons. The solution space of physical parameters can dramati-
cally change by adding dimensions. Changing 1/r → 1/r1+ε might generate
a much better signal of a discrepancy than repeatedly fitting 1/r physics with
better and better data. A signal probably does not indicate “new physics” and
might have a thousand reasons. It is simply unreasonable to forbid looking for
new signals.

With this in mind, our code is built to allow modifying formulas for each
term. It is common but not mandatory to express an alternative in terms of a
new interaction. We follow suit here, introducing for definiteness a “no-name”
particle X , with coupling αX and mass mX [15]. For example, the Yukawa
potential of a scalar interaction at radius r is

VX = αX
e−mXr

4πr

In first order perturbation theory the energy shift of a hydrogenic bound state
ψn` is3

∆En(X) =

∫
d3xαX

e−mXr

4πr
ψ2
n`(r) = 8.11× 1020 · αχα

3

n3m2
χ

Hz. (3)

So long as αX/m2
X is small enough, such a first-order term will contribute to

the Lamb shift at a level comparable to the smallest observable terms of QED.
No elaborate, top-down theoretical superstructure is necessary to explore data
fits. It is sufficient to modify formulas in terms of additional parameters denoted
θX . Examples are given in Section 3.4.

2.1.2. Making a Fit

Our illustrations show how to determine α, R∞ and proton and deuteron charge
radius parameters rp, rd with high precision data. Symbol ae stands for the elec-
tron’s anomalous moment parameter (“anomaly”), feH , feD stand for hydrogen

3Counting on our hands, we expect ∆E ∼ (αme/n)3(αχ)(1/mχ)2, where the first factor
comes from the normalization of ψn` and the second factor from the Yukawa, while the third
factor, from the integral, is needed to cancel two of the powers of me in the first term so that ∆E
has the correct dimensions.
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and deuterium transition frequencies, fµH and fµD stand for muonic Lamb shift
measurements in hydrogen and deuterium, and me comes from atomic recoil
and mass ratio experiments. Symbol θX stands for any additional parameters.
A basic fit is expressed with

χ2 =
(aexpe − atheorye (α, θX))2

σ2(ae)
+

(aexpµ − atheoryµ (α, θX))2

σ2(aµ)

+

NH∑
j

(∆fexpeH,j −∆f theoryeH,j (α, R∞, rp, θX))2

σ2(∆feH)
+

ND∑
j

(∆fexpeD,j −∆f theoryeD,j (α, R∞, rd, θX))2

σ2(∆feD)

+
(∆fexpµH −∆f theoryµH (rp, θX))2

σ2(∆fµH)
+

(∆fexpµD −∆f theoryµD (rd, θX))2

σ2(∆fµD)

+
(4πcR∞/α2 − (me/h)exp)2

σ2(me/h)
(4)

The terms in the order shown will be called χ2(ae), χ
2(aµ), and so on. The

parameters we typically vary are displayed explicitly in the expression above,
while others whose variations are safely suppressed are set to reference values
given on the website.

2.2. Example Parameter: The Fine Structure Constant α

Making independent fits of fundamental constants demands studying the details
of the theory and experiments determining them. The study is rewarding and
guides decisions. We have provided an extensive Appendix with information on
a number of fundamental constants. It appears at the end so we can move more
quickly to our main topic, the Constant Finder website. For illustration we here
provide background information on one constant known for a century as α.

The fine structure constant α is often introduced in perturbation theory, but
actually emerges non-perturbatively and at a very elementary level of quantum
mechanics. The Schrödingerequation for the hydrogen atom is

ı~
∂ψ

∂t
= − ~2

2mMKS

~∇2ψ −
e2
MKS

4πε0r
ψ; ı

∂ψ

∂t

= − ~
2mMKS

~∇2ψ −
e2
MKS

4πε0~r
ψ = −2πλec

2
~∇2ψ − αc

r
.
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The eigenvalues of the second line have units of frequency, illustrating how eas-
ily Planck’s constant (which has unacceptably large uncertainties) is bypassed
in atomic spectroscopy. By inspection α is dimensionless, and takes the same
value in natural units as in the MKS convention.

At a more advanced level, the electromagnetic vector potential of QED is
coupled to matter by the Dirac Lagrangian ψ̄(ı∂µ−qAµ)γµψ, whereAµ = eÃµ
and q = 1 for an electron. Using Aµ for the field, the Maxwell term transforms
−F̃µνF̃µν/4 = −FµνFµν/(4e2), where Fµν = ∂µAν − pνAµ. This shows e
is not a separately observable constant, while α = e2/4π is observable. The
elementary reason for this is the fact that it takes a charge to observe a charge:
Products of charges appear in Coulomb’s Law, for example.

The general pattern of precision measurements is that quantities tied to
MKS standards are determined at much lower precision than the dimension-
less α or quantities related to frequency or length (via crystallography). The
Josephson constant KJ = 2eMKS/hMKS and the von Klitzing constant RK =
hMKS/e

2
MKS have often been candidates for measuring α. Yet when the analy-

sis is properly arranged the expression αMKS = e2
MKS/4πε0MKS~MKSc does

not define the fine structure constant. When α is independent, it defines

e2
MKS/ε0MKS~MKS ≡ 4πα.

The fact that α is independently observable is clear from theory, which
has evolved since αMKS was first defined, to the extent that αMKS now de-
fines eMKS and not the other way around. Take the prediction of the electron
anomalous moment parameter ae ∼ α/2π: A ratio of frequencies observed
for electrons in a magnetic field determines ae with no reference to any MKS
units. The improved definition leads to defining e ≡

√
4πα with relative un-

certainty ur(e) = ur(α)/2. To order of magnitude ur(e) ∼ 10−2ur(eMKS).
The measurement of eMKS on the other hand is difficult because it cannot avoid
introducing the artifact called the kilogram, which degrades precision. The dif-
ference between definitions is obscured when the historical MKS definition is
made early and not later corrected. Traditionally published tables choose to de-
fine the electron charge as eMKS , whose uncertainty is correlated directly with
~MKS , which is discussed further in Section 4.1.

For many years the precision of experiments measuring ae so eclipsed other
experiments that setting theory ≡ data created a de-facto determination of α
and its uncertainties. The literature shows that each new measurement of ae
and each new calculation came with a self-contained announcement for α. Yet
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those determinations have been almost universally misinterpreted as tests of
QED at the same level of precision. Fitting one parameter to one theory tests
nothing. The associated uncertainty also has no information about the non-
trivial comparisons and uncertainties with the entire universe of data where tests
are made. The history of the determinations of α is an excellent place to begin
learning about the procedural dependence of data and theory selection and its
consequences. More on this topic appears in Section 4.3, and (to repeat) Section
4 provides background information on a number of other physical constants.

3. The Constant Finder Code and Website

Figure 3. View of the Input Data section of the Constant Finder site. Default
values for the experimental value, experimental uncertainty, and theoretical un-
certainty of the aµ datum are shown. Those values can be adjusted by the user
via the textboxes shown, or hidden from view via a collapsible menu.

In this section we give step-by-step illustrations of sample analyses which
can be explored with the Constant Finder site.

3.1. The Constant Finder Concept

Constant Finder uses webMathematica [16] to perform least-squares global fits
to fundamental constants on the basis of user-selected data, uncertainties, and
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theory formulas. Users can select default methods, data and parameters, or
insert their own choices. A simple graphics interface allows users to define the
details of a fitting statistic χ2, including or omitting such features as additive
constants (pull parameters). Results can be printed in-browser or exported as
a pdf file or Mathematica notebook. Besides exporting results, users can also
export a record of inputs and intermediate formulas generated in the analysis,
such as the specific form of the χ2-function, which allow for easy creation of
graphics and tables offline.

A separate section of the website is reserved for posing alternatives. These
alternatives are nominally new physics scenarios, but they do not by themselves,
in any eventuality, imply physics beyond the Standard Model (BSM). Anything
can be explored: The code does not depend on any model, nor its internal con-
sistency. Instead, the code will accept corrections to standard theory of any kind,
treating new parameters as new fundamental constants to be determined globally
with Standard Model constants. In case there are degeneracies or indeterminacy
in the formulation of the alternative it will usually be signaled automatically in
the outputs.

The site is designed to give the user maximum flexibility to test alternatives.
For the simplest applications, it takes only seconds to select inputs and gener-
ate results. Every effort has been made to maintain the user’s independence in
analysis decisions and details of fitting. We will limit illustrations to typical
examples with typical assumptions. To begin making your own fundamental
constants, follow the procedure below.

1. Navigate to http://www.constantfinder.org.
2. Select the type of fit.

Select a chi-squared fit method via radio buttons. Choose among built-in
options, such as adding theory uncertainties in quadrature to experimental
ones, or a chi-squared fit with pull parameters as in Eq. 2. Customize the
fitting statistic if desired.

3. Select the input data.
Input data stored on the site is organized by “sector”, such as masses,
anomalous moments, spectroscopy, etc. Users select a given datum via a
checkbox. Each datum consists of an experimental value, an experimental
error, a citation to the experiment, and, depending on the fit-type, a theory
error or pull parameter error. Default values are generated in an editable
textbox. For convenience the experimental values and experimental errors
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default to published values, theory errors to zero, and pull parameter errors
to the published value of the experimental error. Users have total freedom
to insert any input values desired. Users also have the option to add new
data to each sector. Figure 3 shows a screenshot of this portion of the site.

4. The Model Alternative Option
Radio buttons allow users to introduce and explore alternatives. If an alter-
native option is selected, default contributions are instantiated on the site,
sector by sector, via three editable textboxes. The textboxes specify the
formula encoding the sector-specific contribution to chi-squared, the new
parameters to be fit, and any constants not defined internally. The format
is defined on the website and repeated in more than one way to avoid er-
rors. For example, the alternative muon’s anomalous moment parameter aµ
defaults to aSMmu + anewµ , where SM stands for Standard Model and new
stands for a term revising it. Users specify the formula for anewµ by typing
the formula in the box. Default formulas (discussed in Sections 4.3 and 4.4)
generated from a generic no-name boson (Model-X) serve as examples to
keep formatting consistent.

5. Select how to print the results.
Users can print results in the browser window, as a pdf file, or as a Mathe-
matica notebook using one of three buttons on the site. Results printed in
the browser or as a pdf give an overview of the fit, and include the fitted
values for all fit parameters, the chi-squared budget for the fit, and the co-
variance matrix. In addition, contour plots of all possible two-dimensional
correlations between fit parameters are generated by default: see e.g. Figs.
8, 9.
The Mathematica notebook gives users great freedom to explore. Any
quantity defined in the analysis exists in a Mathematica-readable form, and
can be exported for subsequent use. For example, the chi-squared function
specific to the front-end inputs exists in symbolic form, and can be exported
for use off-line. The tables and figures in this section were generated using
Mathematica notebooks generated on the site.

3.2. Input Data and Consistency Checks

We notionally divide experimental data into seven sectors, for convenience. The
defaults are as indicated in Eq. 4: An eH sector, consisting of electronic hy-
drogen transition frequencies; An eD sector, consisting of electronic deuterium
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Figure 4. View of the Constant Finder site upon loading. The gray header links
to other pages within the site, and remains at the top of the page on scrolling.
Users specify inputs via collapsible menus. (Fit-type and Input Data menus are
shown.) In this example the value of α−1 is adjusted automatically on the basis
of the current inputs, showing the effects of decisions as they are executed.

transition frequencies; An ae sector, consisting of the experimental value of the
electron anomalous magnetic moment; An aµ sector, consisting of the experi-
mental value of the muon anomalous magnetic moment; A µH sector, consist-
ing of the measured Lamb shift in muonic hydrogen; A µD sector, consisting
of the measured Lamb shift in muonic deuterium; and a λe sector, consisting of
the Compton wavelength of the electron.

Comment. The demonstration of Table 1, which includes omitting µH and aµ data,
illustrates how decisions influence outcomes. As another example, the illustrations do
not include electron or deuteron scattering, primarily because it is interesting to explore
fits without it.

The Constant Finder website itself certainly allows scattering data to be incorpo-
rated. However the experimental and theoretical uncertainties from µH and µD spec-
troscopy are so much smaller that electron scattering adds little weight in a simple χ2

fit. Moreover, the charge radius is not directly measured in scattering experiments, but
deduced by extrapolating observations to zero momentum transfer. The radius values
determined by such fits are profoundly sensitive to procedure. Reference [17], for ex-
ample, found fitted proton radius values between 0.84 and 0.89 fm using a common
dataset but varying the fit procedure. (The interval between 0.84 and 0.89 fm, not coin-
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cidentally, spans the entire region over which the proton’s size is controversial.) Similar
arguments can be made with respect to the reliability of deuteron radius values deter-
mined from eD scattering data. We have not seen similar criticisms of the µH or µD
data. Section 4.6 has more discussion.

Our decision may appear unconventional, because it is commonly believed that
electron scattering data is necessary and decisive. That notion appears to come from
procedures choosing to exclude the muon data. The rationale of C10 was that R∞, us-
ing µH data, differed from previous determinations using electron scattering by several
standard deviations. That can be understood in advance, because it is a direct con-
sequence of the strong correlation between R∞ and rp (Section 4.5). The additional
reason C10 cited for excluding the muon data was a change in α by 3.4σ from its pre-
vious value. Yet α has changed by much larger amounts repeatedly (Figure 2). Our
example uses our judgment accepting scattering experiments at face value, while by no
means excluding the experiments from the game. Upcoming experiments at Mainz[18]
and JLAB[19] will contribute new information. The MUSE experiment[20] will study
muon-proton scattering to probe possible muon-specific interactions.

3.2.1. Validation and Caveats

Table 2 shows a sample of experimental data available on the Constant Finder
site. By default 8 eH and 8 eD transitions of high precision appear. These tran-
sitions have been selected for not being overly sensitive to theoretical uncertain-
ties. Clicking checkboxes allows adding up to 8 more transitions that involve
the 1S state. Those states are included in C14, for instance. While the 1S2S
transition is famous for its experimental precision, the theoretical uncertainty of
the 1S is perhaps a thousand times larger. Because of that any use of the 1S2S
is highly sensitive to the procedure where theory uncertainties are chosen and
incorporated.4 More information appears in Section 4.5. Where possible, the
Constant Finder defaults seek to minimize sensitivity to procedural decisions.

The QED theory of electronic hydrogen and deuterium spectroscopy con-
sists of many dozens of formulas, subsidiary formulas, and numerical parame-
ters. It is not perfectly systematic, but includes some very tiny effects alongside
much larger contributions, where not all calculations are complete. The compu-
tational core of the spectroscopic component translates the literature into about
30,000 characters of Mathematica implemented independently by each author

4Comparisons were done both including and excluding the 1S2S transition data from the fits,
which with even the most optimistic theory uncertainty estimates in the literature does not have
an overwhelming effect one way or the other.
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on two different machines. An equivalent C++ code is estimated to need about
270,000 characters. Checking line-by-line is impossible with independent ex-
ecution, so validation was done by fitting data and checking and comparing
output numbers, as well as published ones, up to rounding errors.

One of our first tasks reproduced5 the 14 values of 2-point fits shown in
Figure 12. Subsequent comparisons reproduced to 13-digit accuracy and bet-
ter the independent theoretical implementation of level frequencies contribut-
ing to transitions listed in Table 4 of A. Kramida’s review[22], obtained from
Jentschura et al [23]). Note that it is more demanding to compute level fre-
quencies than transitions because many corrections cancel in transitions. The
mean difference of the predictions was 65 Hz with a standard deviation of
568 Hz. We also quantify the difference of theory calculations with the ratio
∆ftt = (f theory−1 − f theory−2)/σexp computed for each energy level. Com-
parisons use σexp (not estimated theory uncertainties) to avoid theoretical prej-
udice, and also because the comparison with the experimental uncertainty is
what matters in the end. We found ∆f2

tt < 0.04 in every case, with a mean
for the set of 0.003 and standard deviation of 0.010. With few exceptions, the
C10-selected transitions are simply those with the smallest experimental uncer-
tainties. These transitions are listed with numerous correlation parameters6 and
additive corrections discussed in the Appendix. To eliminate a possibility those
data are special, we fit the rest of the levels listed in Table 4 of Ref. [22] and
checked its statements.7

3.3. A Global Fit to Standard Model Physics

Table 4 shows the Constant Finder results fitting the fundamental constants
shown. This illustration minimizes a basic χ2 statistic given by Eq. 4 and
neglecting theory uncertainties. Before we discuss the results in depth, a high-
level picture is useful. Figure 6 is a simple schematic showing the relationships
between the fit elements of the illustration. A line between a fit parameter and a

5We thank Th. Udem for patient explanation of the errors of the 2-point fit procedure used in
Ref. [21] and providing computer code to check it.

6Including the input correlations listed in C10 for the experimental data had negligible effects
on our QED-EW study: rp was the same within our uncertainty. Indeed the 1S2S datum is listed
as completely uncorrelated

7Kramida[22] discusses 10 cases of calculations differing from experiment by more than 2σ,
which all involve n = 3 or n = 6 levels. They have a nearly constant energy shift attributed to
systematic experimental error. We verified those discrepancies exist as described.
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Figure 5. χ2
eH versus rp, with R∞, α, and rd fixed at the fitted values of Line

1 of Table 4. When the muonic data is included in the analysis, the electronic
hydrogen spectroscopy data favors a ’small’ proton radius value ∼ .85 fm.
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Figure 6. Schematic of the global fit assuming Standard Model physics. A line
between a fit parameter and a data sector indicates a dependency. Strong de-
pendencies are indicated by blue data sectors. For instance, ae (blue) dominates
the fit to α, while aµ, which depends directly on α, does not. The Rydberg is
strongly dependent on µH and µD data because the experimental and theoreti-
cal uncertainties of that data are very small.
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Table 3. Experimental data compared to calculations by the Constant
Finder. Calculated values are based on a Standard Model fit to Table 2

data. Fitted constants for the fit appear in Line 1, Table 4.

Experimental datum Experimental value Fitted value σexpt

νH(2S1/2− 8S1/2) [Hz] 7.70649350012000× 1014 7.70649350015089× 1014 8600.
νH(2S1/2− 8D3/2) [Hz] 7.70649504450000× 1014 7.70649504448244× 1014 8300.
νH(2S1/2− 8D5/2) [Hz] 7.70649561584200× 1014 7.70649561577394× 1014 6400.
νH(2S1/2− 12D3/2) [Hz] 7.99191710472700× 1014 7.99191710480623× 1014 9400.
νH(2S1/2− 12D5/2) [Hz] 7.99191727403700× 1014 7.99191727407767× 1014 7000.
νH(2P1/2− 2S1/2) [Hz] 1.05784500000000× 109 1.05783220761556× 109 9000.
νH(2S1/2− 2P3/2) [Hz] 9911200000 9911209318 12000.
νH(2P1/2− 2S1/2) [Hz] 1057862000 1057832208 20000.
νD(2S1/2− 8S1/2) [Hz] 7.708590412457× 1014 7.7085904124256× 1014 6900.
νD(2S1/2− 8D3/2) [Hz] 7.708591957018× 1014 7.70859195700519× 1014 6300.
νD(2S1/2− 8D5/2) [Hz] 7.708592528495× 1014 7.70859252845263× 1014 5900.
νD(2S1/2− 12D3/2) [Hz] 7.99409168038× 1014 7.99409168041396× 1014 8600.
νD(2S1/2− 12D5/2) [Hz] 7.994091849668× 1014 7.9940918497316× 1014 6800.
νD(2P1/2− 2S1/2) [Hz] 1059280000 1059220261 60000
νD(2S1/2− 2P3/2) [Hz] 9912610000 9912815235 300000
νD(2P1/2− 2S1/2) [Hz] 1059280000 1059220261 60000

ae 0.00115965218072 0.00115965218078 2.8× 10−13

aµ 0.00116592089 0.00116591840 6.3× 10−10

∆ELS(µH) [meV] 202.3706 202.3705 0.0023
∆ELS(µD) [meV] 202.8785 202.8785 0.0034
λe [m]/10−12 2.4263102367 2.4263102356 1.1× 10−9

data sector indicates a dependency. Strong dependencies have blue data sectors:
the µH (µD) sector dominates the fit to rp (rd) via R∞. The electron’s anoma-
lous moment dominates the fit to α; and the electron’s Compton wavelength λe
dominates the fit to R∞.

For the fit omitting µH (Line 3 of Table 4),R∞ and rp have a strong positive
correlation8 (0.59). For the fit omitting µD (Line 4), R∞ and rd have a strong
positive correlation (0.75). For the fits omitting µH and µD (Lines 5 and 9),
R∞, rp, and rd are all strongly positively correlated with one another, with
correlations exceeding 0.82. See Table 5. Since it is possible to fit R∞, rp, and

8The correlation of R∞ and rp exceeds 0.995 when the 1S2S level is included with no
theoretical uncertainties. That is an example of exquisite sensitivity to procedural decisions.
Theoretical uncertainties of order one thousand times the experimental ones nullify the effect of
the transition.
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Figure 7. The non-trivial correlations of Line 5, Table 4, between rp − R∞,
rd −R∞, and rp − rd. Non-trivial correlations emerge only after removing the
µH , µD data from the fit, and are discussed in the text.



28 John C. Martens and John P. Ralston

Table 4. Fitted values of δR∞/R∗∞, δα/α∗, rp, rd for global fits with
different observables omitted, where R∗∞, α∗ are reference values.

Standard Model physics is assumed. Line 9 omits all muonic observables
and gives fitted values consistent with the values of C14. There is a 2.1σ

discrepancy between the rp values of Line 1 and Line 9. The first line, omit
none, generates Table 3.

line omit (δR∞/R
∗
∞)/10−12 (δα/α∗)/10−10 rp fm rd fm

1 none −13.4(2.9) −2.2(2.2) 0.84088(26) 2.12870(13)
2 λc −13.4(2.9) −2.7(2.4) 0.84088(26) 2.12870(13)
3 µH −10.1(3.6) −2.2(2.2) 0.859(11) 2.12870(13)
4 µD −14.7(4.4) −2.2(2.2) 0.84088(26) 2.1265(55)
5 µH, µD 3.4(9.5) −2.2(2.2) 0.883(19) 2.1433(96)
6 ae −13.4(2.9) −0.068(5.) 0.84088(26) 2.12870(13)
7 aµ −13.4(2.9) −2.2(2.2) 0.84088(26) 2.12870(13)
8 ae, aµ −13.4(2.9) −0.086(5.) 0.84088(26) 2.12870(13)
9 µH, µD, aµ 3.4(9.5) −2.2(2.2) 0.883(19) 2.1433(96)
10 eH −12.0(3.9) −2.2(2.2) 0.84087(26) 2.12870(13)
11 eD −15.2(4.4) −2.2(2.2) 0.84088(26) 2.12870(13)
12 eH, eD −500(1100) −2.7(2.2) 0.84087(26) 2.12870(13)
13 eD, µD −15.2(4.4) −2.2(2.2) 0.84088(26) –

rd, with all other constants such as α held fixed, that has generally been done in
published tables. The rationale is that R∞ does not by itself improve the fitting
of α. However when there are discrepancies afoot, and controversies about (say)
µH charge radius determinations, one cannot rely on a method partitioning data
too narrowly. When µH or µD data is included the large correlations go away,
and no correlations exceed 0.04.

The correlations of Table 5 are shown graphically in Fig. 7. The correla-
tions can be understood as follows. µH dominates the fit to rp but has no R∞
dependence. When it is removed from the fit, the eH and eD data, along with
λe, determine R∞ while rp, the only free parameter remaining in the eH sector
(see Fig. 6), floats to a best-fit value on the basis of the fitted value of R∞.
rd is determined almost entirely by µD. By similar reasoning, rd and R∞ are
correlated when µD is removed. Finally, when µH and µD are removed, the
correlation between rp and rd occurs through the fitted value of R∞.
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Table 5. The correlation matrix of the fit of Line 9, Table 4 omitting all
muon data.


R∞ α rp rd
1.00 0.00356 0.888 0.927

0.00356 1.00 0.00382 0.00395
0.888 0.00382 1.00 0.822
0.927 0.00395 0.822 1.00



We now examine Table 4 more closely. The table shows the (in some cases,
extreme) dependence of fitted values of the fundamental constants on the choice
of input data. Line 9 of Table 4 omits all muonic data from the fit, as done in
the final adjustments of C10 and C149. As consistent, the fitted values of R∞,
α, rp, and rd of Line 9 are all within 1σ of the values recommended by C14,
which we adopt as our reference values10.

In contrast Line 1 of Table 4 shows the global fit to all Table 3 data, including
the muonic data. The fit finds a Rydberg valueR∞ more than 4σ from the value
recommended by C14. It is often reported that QED has been tested severely
by the “most precise physical constant”, but the variations of procedure, all
presenting a good fit, shows the Rydberg can indeed move.

The fit also finds a proton radius value rp = 0.84088(26) fm, which differs
from the radius value of Line 9 by 2.1σ and from the C14 recommended value
by 5.6σ. Chi-squared contours for the Line 1 and Line 9 fits are shown in Figs.
8 and 9, respectively. The Line 9 fit shows a soft degeneracy between R∞ and
rp and between R∞ and rd, which is discussed in Sec. 4.5.

9The muonic deuterium data were not available prior to the C10 adjustment. The C14 adjust-
ment has not been released.

10Our reference values are as follows: R∗∞ = 10973731.568508(65) m−1; α∗ =
7.2973525664(17) × 10−3; rp = 0.8751(61) fm; and rd = 2.1413(25) fm
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The discrepancy between the proton radius values of Lines 1 and 9 is due to
the precision of the muonic hydrogen datum. The eH spectroscopy data with no
reference to electron scattering favors rp ∼ .872(10) fm; see Line 9 of Table
4 as well as Section 4.6 and Fig. 13. However the µH datum, which favors
rp ∼ 0.84 fm, dominates the fit, pulling the fitted proton radius value to its
value.

The fitted correlation matrix shown in Table 5 explains this quantitatively.
In the fit of Line 5, Table 4 (excluding all muonic data) the values ofR∞, rp and
rd are mutually correlated at order “1.” More discussion appears in the caption
of Table 7. Since it is possible to fit these parameters with all other constants
such as α held fixed, that has generally been done in published tables. The
rationale is that R∞ does not by itself improve the fitting of α. However when
there are discrepancies afoot, and controversies about (say) µH charge radius
determinations, one cannot rely on a method partitioning data too narrowly.

Figure 10 rather clearly shows the effect of including µH data. The figure is
made adjusting the experimental uncertainty σ(µH) as a free parameter, while
otherwise defined by Line 3 of Table 4. As σµH is increased, the fitted rp
approaches the value from eH. Increasing σµH by a factor above 200 (!) dilutes
its information enough to be the same as omitting it.

For simplicity the muonic deuterium (µD) datum has been omitted in mak-
ing Figure 10. When included, the µD datum dominates the fit to rd exactly
parallel to the above. When the Rydberg is fit by generic least squares using eH,
eD, µH , µD the muonic data is decisive, unless decisions are made to render it
otherwise.

Inspecting Table 6, we find χ2 in each sector is well-controlled for all fits,
with the (jarring) exception of the aµ sector. The aµ sector, when it is included in
the global fit, contributes 15.7 units of chi-squared despite containing only one
experimental datum, the experimental value of the muon anomalous moment
measured at BNL. Hence we find |aexpµ − athµ | =

√
15.7σ = 3.9σ, where the

superscripts exp and th denote experimental and theoretical values. 3.9σ is the
same magnitude as the discrepancy reported in Ref. [5]. This is not quite a
coincidence: With α fixed, one finds it trivially. But one needs an objective
reason for α to be fixed.11

Tables 4 and 6 suggest the existence of one muon experimental anomaly, but
they did not need to. While the analysis is very detailed compared to piecemeal

11It is easy to fix α using ae. The wisdom of putting immense weight on a single experiment
and one rendition of theory is another issue.
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Figure 10. The change in the fitted value of rp from adjusting the experimental error
of the µH datum ∆ELS(µH) → Nσ, where σ is the experimental uncertainty. As
N is increased rp moves from .84 fm, the value favored by the µH datum, to .88 fm,
the value favored by the eH sector. The global fit here is the same as Line 1, Table 4
omitting muonic deuterium.
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Table 6. Contributions to χ2 for global fits with different observables
omitted. dof stands for the number of degrees of freedom. Standard

Model physics is assumed. The aµ sector, when it appears in the global fits,
contains only one experimental observable while contributing 15.7 units of

chi-squared. All other sectors across all fits have well-controlled
contributions to χ2.

line omit χ2 dof χ2
λc

χ2
µH χ2

µD χ2
ae χ2

aµ χ2
eH χ2

eD

1 none 27.5 17 0.18 0.0012 0.000095 0.042 15.7 7.4 4.3
2 λc 27.3 16 – 0.0012 0.000095 0 15.7 7.3 4.2
3 µH 25.1 16 0.18 – 0.00043 0.043 15.7 4.8 4.4
4 µD 27.3 16 0.18 0.00076 – 0.042 15.7 7.2 4.2
5 µH, µD 22.8 15 0.19 – – 0.045 15.7 3.3 3.5
6 ae 27.3 16 0.000013 0.0012 0.000094 – 15.7 7.3 4.3
7 aµ 11.8 16 0.18 0.0012 0.000095 0.042 – 7.3 4.3
8 ae, aµ 11.6 15 0 0.0012 0.000094 – – 7.3 4.3
9 µH, µD, aµ 7.1 14 0.19 – – 0.044 – 3.3 3.5
10 eH 20.0 9 0.18 0 0 0.042 15.7 – 4.1
11 eD 23.1 9 0.18 0.00062 0 0.042 15.7 7.2 –
12 eH, eD 15.7 1 0 0 0 0 15.7 – –
13 eD, µD 23.1 8 0.18 0.00062 – 0.042 15.7 7.2 –

comparisons, we think it is not thorough enough. What is better judgment: To
completely banish aµ or find a way the data might make sense? What are the
effects of doubling all the experimental uncertainties, and adding hefty theory
uncertainties either to all or selected data? The reader is invited to explore. We
also find this interesting: Contrary to some claims, we can find no evidence for
two muon anomalies, with the second involving the data for µH and µD. In
fact, varying rp inside the eH sector of χ2 while keeping α, R∞, and rd fixed
at the fitted values of Line 1 of Table 4 finds the favored value for rp in the eH
sector ∼ .85(01) fm, consistent with the favored radius value of the µH datum:
see Fig. 5.

3.4. A Global Fit to an Alternative

The global fits to the Standard Model of Sec. 3.3 reveal a poor fit when aµ is in-
cluded. We turn to alternatives. Depending on one’s particular bent, one might
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seek to explain the discrepancy within the Standard Model, by adjusting fit as-
sumptions (theory uncertainties and so forth), or beyond the Standard Model, by
introducing new physics into the fit. While not all alternatives need to seek new
physics, we will provide an example, to illustrate that portion of the Constant
Finder site’s capabilities.

As discussed in Sec. 2.1.1, let X denote a massive boson that interacts with
the leptons of the Standard Model via a simple interaction, with Lagrangian:
L ⊃ λXψ̄ψ or λXµψ̄γµψ, in the case X is a vector. Then X will contribute to
ae and aµ,with its respective contributions mediated by the two new parameters
mX and λX , or αX = λX/4π. For a lepton mass m` it is well known that
contributions to the anomaly will scale like m2

`/m
2
X when mX >> m`. This

makes the muon anomaly generally more sensitive to the new contributions in
the range me << mX . mµ.

Particle-X can also be coupled to protons and neutrons, affecting atomic
and muonic spectra. For simplicity the coupling to neutrons will be set to zero.
Nothing determines the signs of couplings, which we leave undetermined in
searching over different fits. The signs of couplings cancel out in a one-loop
anomalous moment, but do not cancel in Yukawa-type interactions between pro-
tons and electrons, say.

The exercise of adding two parameters to the global fit is a completely neu-
tral investigation. If the global fit improves with the two new parameters it can
be considered statistically significant, and potentially interesting. Meanwhile,
there may be many subtle reasons for the improvement, completely unrelated to
any new physics. The physical consistency of any particular model will gener-
ally hinge on an entire universe of specific predictions and constraints outside
the scope of this paper. Our attention here is restricted to illustrating the fitting
process.

For reasons that will become clear we fix the mass mX = 50 MeV and
represent αX = ξm2

X . We then re-determine R∞, α, rp, rd and ξ from best-fit
values.

Tables 7 and 8 are the same as Tables 4 and 6 but with an additional param-
eter ξ added to the fits. The fourth column of Table 7 shows ∆χ2, which is the
improvement in chi-squared compared to the corresponding fit to the Standard
Model (Table 6). ∆χ2 is ∼ 15 for the fits that include the aµ datum, due to
improvements in the fits to the aµ sector, with χ2

aµ << 1 across all relevant fits.
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Table 7. Contributions to χ2 for global fits with different observables
omitted. A no-name boson (Section 2.1.1) with mass mχ = 50MeV and

coupling αX has been introduced. The aµ sector now has well-controlled
χ2 across all fits. ∆χ2 gives the improvement in χ2 due to the model

variation over the corresponding Standard Model fit of Table 6.
RB =

√
χ2/dof is the Birge ratio. Overfitting is discussed in the text.

line omit χ2 dof RB ∆χ2 χ2
λc

χ2
µH χ2

µD χ2
ae χ2

aµ χ2
eH χ2

eD

1 none 12.5 15 .91(10) 15.0 1.0 0.0011 0.000096 0.24 0.019 7.0 3.3
2 λc 11.2 14 .89(10) 16.1 – 0.0011 0.000096 0 0.0030 6.9 3.3
3 µH 10.2 14 .85(10) 14.9 1.0 – 0.00038 0.24 0.026 4.7 3.4
4 µD 12.3 14 .94(10) 15.0 1.0 0.00068 – 0.24 0.019 6.8 3.2
5 µH, µD 8.2 13 .79(11) 14.6 1.0 – – 0.24 0.037 3.3 3.0
6 ae 11.2 14 .89(10) 16.1 0 0.0011 0.000095 – 0.0030 6.9 3.3
7 aµ 11.8 14 .92(10) 0.017 0.093 0.0012 0.000095 0.022 – 7.4 3.3
8 ae, aµ 7.0 13 .73(11) 4.6 0 0.000053 0.000088 – – 3.5 3.0
9 µH, µD, aµ 6.9 13 .73(11) 0.23 0 – – 0 – 3.3 3.0
10 eH 5.4 7 .88(17) 14.7 1.0 0 0 0.24 0.035 – 3.2
11 eD 8.1 7 1.08(17) 15.0 1.0 0.00056 0 0.24 0.020 6.8 –
12 eH, eD 0 0 – 15.7 0 0 0 0 0 – –
13 eD, µD 8.1 6 1.16(18) 15.0 1.0 0.00069 – 0.24 0.020 6.8 –



A Mechanism for Community-Wide Determination ... 37

Table 8. Fitted values of R∞, α, rp, rd for global fits with different
observables omitted. A no-name boson (Section 2.1.1) with mass
mχ = 50MeV and coupling αX = ξm2

X has been introduced.

line omit (δR∞/R
∗
∞)/10−12 (δα/α∗)/10−10 rp fm rd fm ξ MeV−2/10−11

1 none −12.5(2.9) −5.1(2.3) 0.84115(27) 2.12879(13) 1.52(39)
2 λc −12.4(2.9) −6.5(2.6) 0.84117(27) 2.12879(13) 1.59(40)
3 µH −9.4(3.6) −5.1(2.3) 0.858(11) 2.12879(13) 1.51(39)
4 µD −14.1(4.4) −5.1(2.3) 0.84115(27) 2.1261(055) 1.52(39)
5 µH, µD 2.4(9.6) −5.1(2.3) 0.879(19) 2.1415(96) 1.50(39)
6 ae −12.5(2.9) −0.1(5.0) 0.84117(27) 2.12879(13) 1.59(40)
7 aµ −13.6(3.2) −1.5(4.9) 0.84082(49) 2.12868(19) −0.3(2.3)
8 ae, aµ 4.0(9.0) 0.0(5.0) 0.8463(26) 2.13054(90) 30(15)
9 µH, µD, aµ 2.5(9.6) 0.0(5.0) 0.883(20) 2.1428(97) −1.1(2.3)
10 eH −11.1(3.9) −5.1(2.3) 0.84114(27) 2.12879(13) 1.50(39)
11 eD −14.3(4.4) −5.1(2.3) 0.84115(27) 2.12879(13) 1.52(39)
12 eH, eD −1300(1100) −6.5(2.6) 0.84115(27) 2.12879(13) 1.57(40)
13 eD, µD −14.3(4.4) −5.1(2.3) 0.84115(27) – 1.51(40)

Each fit in Table 8 represents a candidate solution12 to the muon experi-
mental anomalies, valid in its own domain. For instance, Line 1 of Table 8,
fitting all Table 2 data, solves the proton size puzzle in favor of the smaller
muonic radius ∼ 0.84 fm. The mechanism is somewhat intricate. The muonic
anomaly is quite sensitive to the mass range mX ∼ 50 MeV. For the same mass
range the eH Lamb shift and ae approximately depend on ξ = αX/m

2
X . The

extra attraction caused by X between electron and proton decreases rp in eH
to be compatible with µH . The fine structure constant moves because α and
αX/m

2
X compete to fit the data for ae, provided mX is not too small. The fit of

Line 1 also shifts R∞ by 4σ relative to the C14 value, while the fit shows this is
tolerable.

For another example Line 9, omitting all muonic data, reverts as expected
to favor the larger electronic radius∼ 0.88 fm. Line 9 then finds only a nominal
shift in R∞ relative to C14.

The Birge ratios of Table 7 are close to one within uncertainties, with a few
exceptions. Lines 3 and 5, omitting µH and µH , µD, have RB = .85(10) and
RB = .79(11). However in both cases Model-X is needed to reduce χ2 in the

12A tentative solution, up to further experimental constraints and tests
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aµ sector (see Lines 3 and 5 of Table 4). Line 8, omitting the muon and electron
anomalous moments, has RB = .73(11). The corresponding line of Table 4,
which assumes Standard Model physics, shows reasonable fits in all sectors. By
its accounting, Model-X is not needed in the fit. Finally, Line 9 of Table 7,
omitting all muonic data, has RB = .73(11). Omitting all muonic data from the
fit removes the muon experimental anomalies from the problem, along with the
need for Model-X or any new physics.13

Including Model-X in the global fits does not significantly alter the Standard
Model correlations between R∞, α, rp, and rd, discussed in Fig. 6. In addition,
the correlation of ξ with the Standard Model fit parameters is negligible (< 0.01
across all fits).

Table 9. Fitted values of δR∞/R∗∞, δα/α∗, rp, rd, and ξ = αχ/m2
χ for the

full global fit with mχ fixed at different values. R∗∞, α∗ are reference
values. Line 3 of this table corresponds to Line 1 of Table 8.

mχ MeV ∆χ2 (δR∞/R
∗
∞)/10−12 (δα/α∗)/10−10 rp fm rd fm ξ MeV−2/10−11

15 6.6 −10.9(3.1) −10.6(3.9) 0.84157(37) 2.12894(16) 4.3(1.7)
25 12.4 −11.4(3.0) −8.9(2.9) 0.84147(31) 2.12890(14) 3.45(98)
50 15.0 −12.5(2.9) −5.1(2.3) 0.84115(27) 2.12879(13) 1.52(39)
100 15.5 −13.0(2.9) −3.6(2.2) 0.84101(26) 2.12875(13) 0.70(18)
150 15.6 −13.1(2.9) −3.1(2.2) 0.84097(26) 2.12873(13) 0.49(12)
200 15.6 −13.1(2.9) −3.0(2.2) 0.84096(26) 2.12873(13) 0.40(10)
300 15.6 −13.2(2.9) −2.8(2.2) 0.84094(26) 2.12872(13) 0.320(81)

Table 9 shows the results of global fits to all Table 2 data for different values
of mX . The second column shows the improvement in chi-squared compared
to the corresponding fit to the Standard Model (Line 1 of Table 6). ∆χ2 is 6.6
for mX = 15 MeV, increasing to ∼ 15 for mX > 50 MeV, where it remains for
masses mX out past a GeV. The fits favor a proton radius rp ∼ 0.84 fm. Global
fits with mass mX & 30 MeV find χ2

aµ < 4 (corresponding to |aexptµ − athµ | <
2σ), with χ2 in all other sectors well-controlled. The entire region of mX & 30
MeV provides an alternative to excluding aµ from consideration.

Figure 11 shows the region, in red, in the (mX , αX) plane favored by the
Table 9 analysis. The red band represents the fitted value of αX for given mass

13Birge ratios are not shown in Table 4 because the fits assuming Standard Model physics fit
only the Rydberg sector parameters, and no nuisance parameters. Hence overfitting cannot be an
issue.
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Figure 11. Region in the (mX , αX) plane favored by the no-name analysis (red).
The red band represents the fitted value of αX for given mass mX , plus or mi-
nus 2σ. Within the red band the improvement ∆χ2 > 6 for mX > 10MeV,
dropping rapidly to ∆χ2 > 15 for mX > 50MeV , and then decreasing mono-
tonically at a much slower rate for larger mX . No upper limit on mX can be re-
solved, The solid black lines define a piecemeal solution region seeking only to
solve the muon g-2 anomaly with α, R∞, rp, and rd fixed at C14 recommended
values. The region is is falsely restrictive by not implementing a self-consistent
global fit.
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mX , plus or minus 2σ. It provides candidate solutions to the muon g-2 anomaly
for values of mX & 30 MeV. The solid black lines define a default piecemeal
solution region which fits the muon g-2 anomaly with α, R∞, rp, and rd fixed
at reference values. This region is identical to the green band of Fig. 22 of
Ref. [24]. The candidate solution region of the red band (mX & 30 MeV)
differs visibly from the default solution region for mX . 50 MeV. If the global
fits of Table 9 had shifted α from its reference value by a greater amount (cer-
tainly possible, if a different model were assumed), that difference would be
compounded. Figure 11 represents a caution against fitting or placing limits on
model parameters without refitting self-consistent fundamental constants. It is
faulty in principle, and generally leads to incorrectly restrictive constraints.

Comment. There has been great interest recently in light weakly, interacting
bosons known as ”dark photons”. These models assume more structure at the
outset than Model-X. For example the dark photon models (as currently im-
plemented) predict a sign for couplings contradicting the solution found here.
Several experimental studies might exclude portions of Fig. 11 if the dark pho-
ton parameter ε2 is transcribed to αX . Yet the implications of most experimental
studies are quite model-dependent and need additional assumptions to apply. A
paper including such considerations can be found in Ref. [15]. The work re-
ported here restricts attention to illustrating the potential power of the Constant
Finder concept.

4. Conclusion

The sensitivity of the fundamental constants to procedural decisions is an open
secret in high-precision QED, but the (disturbing) extent of the sensitivity is sel-
dom appreciated. The fundamental constants are highly sensitive to the choices
of data and theory inputs as well as the treatment of experimental and theoret-
ical uncertainties. The relationships are global and there does not seem to be a
universal “best” constant or a “best” way to proceed.

Each set of constants should be considered in relation to the assumptions and
correlations that went into the set’s determination. As a corollary, testing QED
and placing limits on new physics requires a global approach which appropri-
ately accounts for assumptions and correlations. This small shift in perspective
has important consequences.
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For instance, separate piecemeal fits to ep scattering data and muonic hy-
drogen spectroscopy data (with many parameters fixed) give discrepant proton
radius values. However a global fit to all Table 2 data, allowing relevant param-
eters to float to best-fit values, removes the discrepancy, for the price of shifting
R∞ by 4σ.

The muon g-2 anomaly is a second example of the importance of a global
view. The studies done here indicate it demands new physics or a drastic revi-
sion of the uncertainties that enter the determination of aµ. In either case, the
chi-squared function will surely change, and with it the fitted values of the con-
stants, making a global fit necessary. In the case of new physics, a global fit
becomes all the more central, since new information will generally shift the fa-
vored values of the previous constants. Immense importance is sometimes given
to exclusion limits, where correct experiments might be dismissed as faulty, or
correct theory can be forgotten as wrong. The general trend of global fits is
to weaken exclusion limits compared to the internally inconsistent practice of
keeping old constants fixed.

As we have experienced, the effort required to make one’s own global fits
from scratch is quite significant. Now that the work has been done the Constant
Finder site removes the burden, making it easy for everyone to pose and test
alternatives within a global framework. We have a new laboratory for exploring
high precision physics.

Appendix: Background on the Fundamental Constants

4.1. Planck’s Constant, A Reference Value

In (Hartree) atomic units ~ = e = me = 4πε0 = 1. The speed of light is
1/α ∼ 137. While convenient for some calculations, the unit system cannot be
compared directly to experimental data, because it lacks a dimensionful scale.
In “natural” units ~ = c = 1 the masses have units of frequency. Calculations
can be compared to data, where energy has units of frequency. Since frequency
is the most precisely measured physical quantity, and directly measured in spec-
troscopy, the intermediate step of converting calculations to MKS energy with
Planck’s constant is bypassed. It is always possible to make the conversion, of
course, but there is nothing fundamental to gain by expressing quantities in the
units of Newtonian physics.

An efficient way to show that no high-precision measurements demand Planck’s
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constant comes from the path integral. The weight of any quantum configura-
tion is eıS/~, where S is the configuration’s action. In the semi-classical old
quantum theory the action of a classical particle in MKS units was used. In
QED and the Standard Model we use the action of the quantum fields. The ac-
tion in MKS units is multiplied by ~, which cancels out. The path integral is
not a separate postulate, but derived from the time evolution operator e−ıHt/~.
Then H/~ and S/~ are the relevant quantities, not H or S and ~ separately, and
~ cancels out.

In the Dirac sector, for example, the MKS mass term in natural units is
mMKSψ̄ψ, where ψ is the Dirac field. Then mMKS/~ appears in physical
quantities, explaining why precision constants use the directly measured quan-
tum of circulation h/2me without dealing with the Newtonian electron mass and
h separately. The textbook Dirac kinetic energy ı~ψ̄∂µγµψ becomes ıψ̄∂µγµψ
in S/~, so the time evolution is calculated directly in terms of frequency, by-
passing Planck’s constant.

The international organization charged with standardizing units plans in
2018 to set Planck’s constant to a reference value[25], much as c was set to
a reference value in 1983. The movement is connected with plans to eliminate
the prototype kilogram as a standard. Since ~ is an MKS constant, any method
to measure it must somewhere introduce the kilogram. A leading technology
for a new standard is the watt-balance. It is a highly precise MKS device:
As Ref. [3] writes, “By comparing mechanical power measured in terms of
the meter, kilogram, and second to electrical power measured in terms of the
Josephson and quantum Hall effects, watt-balance experiments have provided
the best value for the Planck constant h.” While setting Planck’s constant to
a reference value will make its role in precision physics more transparent, the
current situation already has no fundamental role for ~.

4.2. The Electron Mass, or Compton Scale

As mentioned earlier the definition of the kilogram cancels out in λe ∼ h/mMKS .
Compton’s original scattering experiment directly observed the incoming and
outgoing x-ray wavelengths with refraction off a crystal. This is why the exper-
iment observed the Compton wavelength directly. The current experiments that
measure the Compton scale also involve momentum conservation, as follows.

A collection of cooled atoms is trapped in an optical comb, which is a device
using interference of laser beams to make an atomic trap. Lasers manipulate the
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atomic state of the atoms, which are typically 133Cesium or 87Rubidium. The
trap is then adjusted to give the atoms a known velocity ~v. The atoms collide
with a laser beam of precisely known wave number ~k. Momentum conservation
mMKS−atom~v = Nγ~k. Knowing ~v and the number of photons Nγ allows
mMKS−atom/~ to be measured.

Between 2008 and 2011 the relative uncertainty of mMKS−Rb/~ reported
by the LKB group evolved from 9.2× 10−9 to 1.9× 10−9, a factor of 7. While
this is an impressive technical achievement, it is not very well documented. The
best measurement[26] is described in a 4-page Physical Review Letter contain-
ing few details, and another paper for a popular audience[27]. While classical
physics assumes classical physics is exact, the systematic errors of the theory
used in the paper are not reported. Thus for many years an order of magni-
tude revision of an important experimental quantity has been poorly supported.
Finally in 2017 new experiments emerged[28, 29].

Measuring one mass precisely determines many others because the atomic
relative masses (relative to 12C) are known with high precision, typically by
using one apparatus for more than one measurement. Then measuring h/mRb

with a known uncertainty measures h/me with a computable uncertainty. As
Bouchendira et al. [26] relate it, a value for the fine structure constant can
determined using

α2 =
2R∞
c

mRb

me

h

mRb
. (5)

In that paper the relative errors on mRb/me and R∞ were 7 × 10−12 and
4.4 × 10−10, so that α−1 = 137035999037(91) was determined in one step
with relative error 6.6 × 10−10. Actually this kind of determination is circu-
lar, like the others, while it becomes meaningful in comparison with (say) α
from g − 2 or global fits. Our code includes a term χ2

λ = (4πcR∞/α
2 −

(me/h)exp)2/σ2(me/h) which can be modified as desired, and where σ2(me/h)
can be adjusted to any value.

4.3. The Electron Anomalous Moment Parameter

The Dirac Lagrangian defining the anomalous moment is− ıκ
2m ψ̄σµνψF

µν . The
magnetic moment µ = ge/2m depends on the mass, while the moment param-
eter a = (g−2)/2 is dimensionless. The most precise measurements have been
made in devices related to Penning traps. An electron in a magnetic field has a



44 John C. Martens and John P. Ralston

spin precession frequency νs and a cyclotron frequency νc. The solution to the
Dirac equation predicts

g

2
= 1 +

νs − νc
νc

= 1 +
νa
νc
,

where νa = νs−νc is called the anomaly frequency. The fact g = 2 in the zeroth
order theory causes the series expansion of ae to begin at α/2π ∼ 1.12× 10−3,
which is already a very small value. Due to the factor of 1000, observing ae to
an absolute precision of 10−9 determines ge to relative precision of order 1012

(ppt). The fact the frequencies can then be observed in the same apparatus while
integrating over relatively long times has made the electron’s parameter ae one
of the most precisely measured numbers in physics.

As discussed in Ref. [30], the precision of recent measurements is actually
sensitive to tiny relativistic effects. The lowest quantized energy levels with
quantum numbers n, ms are

En,ms =
g

2
hνcms + h(n+

1

2
)ν̄c − hδ(n+

1

2
+ms)

2.

Here ν̄c is a combination of frequencies more readily observed than νc, and δ is
a relativistic correction, cited as

δ = hν2
c /mc

2 ∼ 10−9.

Once again the frequencies are observed without actual reference to Planck’s
constant. The 2011 determination of g − 2 to 0.28 ppt found

ae = 0.00115965218073± 2.8× 10−13. (6)

The total experimental uncertainty is much less than the relativistic correction.
The current Standard Model [31] calculation of the electron anomalous mo-

ment parameter is summarized by

atheory−QEDe = 1.7147× 10−12 + 0.159155α− 0.0332818α2 + 0.0380966α3

− 0.0196046α4 + 0.0299202α5. (7)

The term of order 10−12 is the one-loop electroweak contribution plus hadronic
contributions. Comparing Eq. 7 with Eq. 6 yields a value for α, along with a
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reference value for its uncertainty from the experimental uncertainty:

1.7147× 10−12 + 0.159155α− 0.0332818α2 + 0.0380966α3

− 0.0196046α4 + 0.0299202α5 − 0.00115965218073 = 0;

α→ {1.091± 1.106i, 0.007, −0.767± 1.270i}. (8)

With more precisionα = 0.0072973525644(17), andα−1 = 137.035999084(51).
This is an example of not using a global fit, which at most determines a constant
circularly. One can compare α−1 = 137.035999084(51) cited in Eq. 67 of Ref.
[30].

The most cited published determinations of α are straightforward in arriving
at the same result. While many possible inputs to determining the parameter are
discussed, the least squares fits are strongly dominated by the smallest reported
experimental uncertainty, which comes with ae. Only one theoretical calcula-
tion of ae to the claimed precision at order α5 has been done. Near 2007 at least
three errors (sometimes described as “an error”) were found in the α4 terms.
While the errors were known before publishing the C06 review, they occurred
after the rigid cut-off date for new information used by the review. Finally in
2010 the changes were incorporated, with the statement “the 2010 value of α
shifted significantly and now is larger than the 2006 value by 6.5 times the un-
certainty of that value.” The variations in Figure 2 come from the published
tables. They can also be reproduced simply by putting the experimental uncer-
tainties in the evolving theory formulas, with no other information. The statis-
tics of the fluctuations are not predicted by any of the estimated uncertainties
appearing in the literature.

The exercise invites one to experiment. Dropping the term of order α5

changes α by 3.9 × 10−12. It also discovers another14 real root α ∼ 1.332.
Dropping the electroweak term decreases α by 1.08 × 10−11. Considering al-
ternatives, the one loop correction of a scalar particle with electron coupling
constant αX and mass mX is

atheory−Xe = 0.027706 ξm2
Xf(mX/m`), (9)

where ξ =
αX
m2
X

(10)

14A polynomial of nth degree has n complex roots. We find no particular reason to omit
multiple solutions.
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Here m` is the lepton mass and f(mX/m`) is an integral expression from the
one-loop calculation found in the literature[32]. In the limitmX/m` >> 1 then
f → 1.

It is very easy to use the formula above with a nominal uncertainty to put
a limit on Model-X-type parameters. However it is not globally consistent:
The contribution of atheory−Xe changes the value of α. Moreover, it changes
the value trivially fit, testing nothing, and the sum of the two contributions is
completely degenerate and indeterminate for the separate parts. Considering
the next-most precise determination of α is reasonable, but also not definitive:
How does that experiment depend on theory assumptions? Why put very much
attention on one experiment at all? Once again decisions are needed. It is not
generally possible to set limits on new interactions, nor find the true (testable)
uncertainties of QED theory without incorporating maximal experimental infor-
mation using global fits.

4.4. The Muon Anomalous Moment Parameter
The muon is much different from the electron, in both theory and experiment.
Due to the muon’s mass the contribution of hadronic physics is significant. The
one-loop hadronic vacuum polarization contribution is non-perturbative, and de-
pends on fitting experimental data. The experimentally-deduced hadronic vac-
uum polarization is significant, the “light-by-light” contribution is controversial,
and the electroweak contributions are much different from the electrons. Col-
lecting the terms of Ref. [33] gives the muon anomalous moment parameter
aµ

aµ = 2.7× 10−9 + 0.15155α+ .0788406α2 + 0.77665α3 + 1.3436α4 + 2.4616α5

(11)

The parameter is measured by a technique conceptually similar to the Penning-
trap measurements: The critical observable is the difference between the spin
and rotational frequencies. However the regime is a high energy one using a
classical equation of motion. The classical spin is a spacelike 4-vector sµ nor-
malized to s2 = −1 and orthogonal to the classical 4-momentum pµ. The
magnetic moment associated with a spin precesses in a magnetic field. When
a muon decays by µ → e + νµ + ν̄e the final state electron’s angular distribu-
tion is correlated with the muon spin. The experiment observes an oscillating
time dependence of final state electrons from muons circulating in a precisely
determined magnetic field.
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The so-called BMT equation for the spin plays a critical role. Some deriva-
tions are difficult, so we present a short one here. Differentiating gives s′ · p +
s · p′ = 0, where prime is the derivative with respect to proper time τ . Multiply
by s and contract, and then s′ · p = −s · f is pre-determined by the relativistic
force f . The non-trivial spin equation must predict the perpendicular part,

(gµν − pµpν/m2)
dsν

dτ
= Ωµ,

dsµ
dτ

+ uµs · u′ = Ωµ; pµ = muµ.

The uµu′·s term on the left side is the Thomas precession. If the only interaction
comes from an external field Fµν , the only 4-vectors linear in s are uµsαFαβuβ
and Fµβsβ . The most general equation is

dsµ
dτ

= −uµs · u′ +
α

mC
uµs

αFαβuβ +
β

mC
Fµβsβ.

This is the BMT equation before assuming the classical Lorentz force, p′µ =
eMKSFµνuν . With that assumption and identifying parameters in the non-
relativistic limit gives

d~s

dt
= (

α

mC
− eMKS)~v(~s · (~v × ~B)) +

β

mC
(~s× ~B) ≈ β

mC
(~s× ~B), (12)

where in the last step we have assumed v/c << 1. In terms of background
magnetic and electric fields ~B, ~E the anomalous spin precession frequency is

~ωa = ~ωs − ~ωc = − eMKS

mµMKS
(aµ ~B − (aµ −

1

γ2 − 1
β × ~E)). (13)

This assumes the spin and velocity vectors are orthogonal to the magnetic field.
The dependence of aµ on the electric field is minimized by storing muons with
the “magic ” boost factor γ = 29.3, equivalent to a muon momentum p =
3.09 GeV/c. Then B and eMKS/mµMKS need to be known to determine aµ
from ωa. The scale eMKS/mµMKS is conventionally eliminated in terms of
µµ/µp = 3.18334539(10)[34]. The number and uncertainty in µµ/µp depends
on more theory and experiments given in the references.

The Brookhaven E821 experiment [5] found aµ = 0.00116592091(63).
This value is larger than calculations by 2.9 × 10−9, which is nominally 3.9σ.
The muon ring has been moved to Fermilab, where a new experiment is under-
way. The muon’s moment is an arena where theoretical alternatives using Eq. 9
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have been extensively explored[35, 36, 37, 38, 39, 40, 41, 42]. Note, however,
that when analysis fixes other fundamental constants such as α and µµ/µp, the
piecemeal exploration will be limited to those assumptions, and generally pro-
duce outcomes that are overly restrictive.

4.5. The Rydberg Constant

Figure 12. One approach to fitting the proton charge radius from Ref. [21],
along with its caption.

The energies of the bound hydrogen atomic states with quantum number
n are -13.6 eV/n2. Atomic physicists re-arrange the perturbative theory of the
atom to maintain the Rydberg constant15 R∞ = α2me/2 as the fundamental
scale. Highly precise atomic transition frequencies will determine R∞ to a bet-
ter precision than computing it with typical uncertainties of α and λe, provided

15In natural units
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they and the proton or deuteron charge radius is known with sufficient precision.
The charge radius of the proton rp enters from an expansion of its electromag-
netic form factor in powers of momentum transfer q2:

F1(q2) = 1− 6r2
pq

2 +O(q4).

Section 4.6 defines F1. The deuteron charge radius analog enters with atomic
deuterium data.

With the other parameters fixed, two transition frequencies of atomic hydro-
gen can be fit to two values of R∞ and rp. Figure 12 shows the results from
Ref. [21]. We reproduced this calculation, along with its error bars, which come
from simply adding and subtracting the experimental uncertainties of the transi-
tions shown. The other transition for each case is the 1S2S, whose experimental
uncertainty of 10 Hz is hundreds to thousands of times smaller than all the oth-
ers. It is widely believed that such multiple two-parameter fits determine the
Rydberg at highest possible precision, and that the process depends critically on
the superb experimental measurement of the 1S2S frequency. Neither belief is
true.

It is also believed that theory reproducing the 1S2S transition is very de-
manding, and a supreme test of the theory. Yet actually nothing is tested. Using
one ultra-precise datum forces the entire analysis to conform to one ultra-precise
datum. The comparison of theory predictions and experimental values in Table
1 of Ref. [43] shows exact agreement of experiment and theory and their uncer-
tainties in the first line. About this A. Kramida[22] has remarked:
However, one thing can be stated with certainty: the exact agreement of those two
ultra-precise 1S2S measurements with the QED calculations cannot be considered as a
confirmation of the QED theory, because it is the result of the fitting of the fundamental
constants based on these (and other) transitions.

In fact the 1S2S transition is 185 times more precise than the next most
precise transition. The ratio of the smallest to the mean σ2

i in the data set used
is 34225. Any datum with uncertainties much smaller than all the others will
completely dominate a basic least-squares fit using experimental denominators
σ2
exp. The demands of fitting the 1S2S transition with great exactness and with-

out considering a single further item of experimental or theoretical information
are expressed with a linear relation between two parameters:

rp ∼ 0.877+1.05× 109δR∞/R
•
∞, (14)
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assuming 109δR∞/R
•
∞ << 1.Here rp is in units of Fermi, andR∞ = R•∞(1+

δR∞/R
•
∞), where R•∞ is a reference value of 1097331.568539 m−1 The sym-

bol δR∞ can be called “the offset” relative to the reference value to avoid con-
fusion with the fitting uncertainty of R∞.

Eq. 14 will be called the “1S2S degeneracy line”. A similar degeneracy
line exists for each transition, but their uncertainties are so much larger that
none dominate a global fit. Eq. 14 has been evaluated using the C10 reference
value and the group’s choice of electron scattering data. The data from muonic
hydrogen rp ∼ 0.84 has been excluded. That decision yields rp = 0.877 at
δR∞ = 0. On the other hand choosing rp = 0.84 gives δR∞/R•∞ = 9.5 ×
10−10. (There is a strong case that rp = 0.84 is the more reliable value, as
discussed in Section 4.6.) See Figure 1 for estimated uncertainties.

A few facts explain why the 1S2S line can be measured with great preci-
sion. It is a 2-photon transition with a very long lifetime and correspondingly
small natural line width. The experiment excites the transition with two photons,
cancelling Doppler recoil effects. And the scientists are experimental geniuses
who rightly deserve the Nobel Prize awarded in 1997. As a consequence, few
doubt the importance of the 1S2S transition for determining the fundamental
constants. Yet so far in this discussion something has been overlooked. Funda-
mental constants depend on the theory used to evaluate them. The theoretical
uncertainty σtheory of the 1S2S transition is much larger than its experimental
uncertainty. Estimates in the literature vary, with σtheory ∼ 104Hz the order
of magnitude, and σtheory ∼ 2.5×3Hz the smallest value we have seen. How
does one assess the usefulness of an experimental number whose theoretical
uncertainty is 250-1000 times larger than its experimental one?

C10 and C18[44] use a version of χ2 with pull to treat theory uncertainties
with additive constants. Table XVIII of C10 shows 52 “principal input data
for the determination of the 2010 recommended value of the Rydberg constant
R∞”. Of the 52 input data 27 entries are experimental data. These data are 16
values of selected hydrogen transition frequencies, plus 8 deuterium transition
frequencies, along with two values of the proton radius rp and one deuteron
charge radius analog rd from electron scattering. The other 25 input data are the
initial values of pull parameters (“additive corrections ”) δH(1S1/2), δH(2S1/2),
etc. Those input data are varied in the fit to become outputs. (It is characteristic
of χ2 with pull to have more free parameters than experimental data.) The
estimated theory errors appear in the denominators of pull parameters. When
the theory uncertainty assigned to the 1S2S is sufficiently small, then R∞ and
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rp are guaranteed to lie along a certain 1S2S degeneracy line, regardless of
what theory is used.

Reconsidering Figure 12, suppose the theory used for the 1S2S transition is
modified by adding a constant ∆f1S2S . Then since the points are all determined
relative to a 1S2S baseline, the central value of every point shifts to the right or
left by a calculable amount. The uncertainties are even more interesting. The
smallest experimental uncertainty after the 1S2S is 6396Hz. A theoretical un-
certainty of order 104 Hz added in quadrature will more than double the size
of all the error bars in the upper part of Figure 12. There seems to be two rea-
sons this has been overlooked. First, there is a perception in atomic physics
that theory is already much more precise than experiment. It is generally true,
except for the 1S level, which is particularly difficult to calculate and sensi-
tive to calculations that (in fact) are incomplete. Second, the acclaim for the
1S2S experiment has sometimes forgotten the role of theory, in an experimen-
tal world-view where the fundamental constants might have been self-defining
quantities.

Figure 13 shows an experiment fitting R∞ and rp−eH while entirely remov-
ing the 1S2S transition. The analysis uses the standard set of transitions in a
basic least squares fit with no pull parameters or correlations and experimental
uncertainties16, and again ignores the muonic hydrogen data for rp−µH . The
uncertainty in R∞ shown is about twice as large as when using the 1S2S with
a χ2-pull theory uncertainty of 2.5kHz. That decision is responsible for the re-
ported error bars on R∞. If the theory uncertainty is much smaller, the error
bars on R∞ will decrease. If the theory uncertainty is much larger, the 1S2S
has less and less weight, until its effects are the same as removing it altogether.

The figure shows the perception that the proton size has been precisely and
unconditionally determined by spectroscopy is flawed. The spectroscopic data
actually determines a correlation between two free parameters, which are rp−eH
andR∞. The correlation coefficient of C10 fits is 0.99, meaning that rp−eH and
R∞ can be varied quite a bit along a straight line while giving a good fit. It is a
basic concept error to use error bars without attending to such correlations.

What is to be made of the great sensitivity of the Rydberg constant to pro-
cedural decisions? We think it’s important to know the sensitivity to procedure
exists. The amount of sensitivity is adjustable: The role ofR∞ as “the most pre-
cisely determined physical constant” is somewhat of a sociological agreement.

16Results do not change significantly when the published experimental correlations are in-
cluded.
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Figure 13. Contours or “error ellipses” of χ2 in the (rp, δR∞/R∞) plane) with
the 1S2S transition omitted for a fit to eH spectroscopic data. Contours show 1,
2, 3 σ Gaussian confidence levels corresponding to ∆χ2 = 1, 4, 9. The muonic
value rp = 0.841 fm is at the left edge of the plot close to the 3σ contour.
Including the 1S2S transition produces a 1σ error ellipse too thin to resolve
graphically, and represented by the thick segment (red online). The dashed line
is the degeneracy line of the 1S2S transition. Least-squares analysis dominated
by this single datum predicts rp andR∞ fall on the line, regardless of other data
or theory. The point and its error bars are the values published by C10[6], which
are predicted to lie along the line. The next most precise transition produces a
different degeneracy line (solid line), which barely intersects the 2σ region.
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In general, the uncertainty of the Rydberg can be increased without causing un-
due effects in the global relations between constants. How much one will allow
deviating from previous determinations is a subjective issue.

4.6. The Proton and Deuteron Charge Radii

The coupling of a spin-1/2 particle to a virtual photon is parameterized by form
factors, defined by

< p′s′|Jµ|ps >= ū(p′, s′)
(
eγµF1(q2) +

ıe

2m
σµνq

νF2(q2)
)
u(p, s)

where qν = (p′ − p)ν , q2 = qµq
µ, and the other symbols are defined in

textbooks[45]. The proton charge radius is defined by

r2
p = −6

∂GE
∂q2

∣∣
q2=0

, (15)

where GE = F1 + q2F2/4m
2. The name “charge radius” is not directly related

to the quantity measured.
The name originally came from non-relativistic, Born-level perturbation

theory, a procedure not suited to definitions, and not currently relevant. It can
also be motivated by a model superposing relativistic scattering amplitudes with
momentum transfer ~q over a static, non-dynamical spatial charge distribution.
That leads to a picture where F1(~q) is the Fourier transform of the spatial charge
distribution, with a second moment given by the derivative. The actual scatter-
ing of a photon with relativistic quarks and antiquarks in a proton is highly
dynamical: the system reacts with the probe, and can hardly be “undisturbed”.
Moreover, both sides of Eq. 15 are Lorentz scalars. The second moment of a
charge density transforms differently, like a 3-vector-squared. Thus rp is not
exactly the proton charge radius, but the terminology does not matter so long
as the quantity is used consistently, and the misnomer does not affect further
calculations...which it sometimes does17.

Estimates of rp from electron scattering have a very long history going back
to Rutherford. The q2 dependence of F1 has been measured many times by
many different groups often with remarkable precision. However the scattering

17The definition r2p =
∫
d3x r2ρE(r) is sometimes cited when the derivative of F1 is actu-

ally used. When the density-based definition is imposed in analysis of F1 it can introduce an
unphysical bias.
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cross section at q2 = 0 is singular, and ∂F1/∂q
2
∣∣
q2=0

is unobservable in scat-
tering. It is estimated from scattering data by extrapolation. For the purpose of
determining the other fundamental constants the extrapolation need not repro-
duce q2 = 0 exactly, but approach the atomic physics scale of q2 comparable to
R−2
∞ . That is quite difficult.

The process of extrapolation is controversial. It is easy to convince oneself
that 0.8 < rp < 0.9, while 2-digit precision depends on decisions. A fit from
Mergell called “a comprehensive analysis ” gave rp = 0.84 fm and was used
in the C98 report. Curiously this value coincides with the determination from
muonic hydrogen, discussed in a moment. Subsequently C02 and later reports
abandoned that value in favor of values of rp ∼ 0.89, for which the analysis
of [46] has been cited. The reason for the choice is that different values of
rp degrade the determination of the Rydberg. Meanwhile, renewed interest in
extrapolation sensitivity has yielded several papers[47, 48] showing that existing
electron scattering data is incapable of distinguishing rp ∼ 0.84 from rp ∼ 0.9.
The PRAD experiment[19] has been underway, and will attempt to measure the
form factor at 1% accuracy down to the region of q2 ∼ 10−4GeV 2.

The proton size puzzle refers to a perceived inconsistency of rpe extracted
from electron scattering, and rpµH extracted from muonic hydrogen spectroscopy.
Many explanations have been proposed[49, 50, 51, 52, 53]. The Lamb shift cal-
culations of muonic hydrogen are remarkably simple compared to electronic
hydrogen[54]. The contribution of rp scales like the wave function squared
at the origin. Due to the muon mass mµ ∼ 207me, the effects of rpµH are
2073 ∼ 107 times larger in µH than in eH . The proton size then makes a rela-
tively large and observable contribution in µH , where[55] the 2SF=0 − 2PF=1

energy difference in units of meV is

∆E(α, rpµH) = 0.0332 + 206.0336α3/α3
• − 5.2275r2

pµHα
4/α4

• (16)

The CREMA collaboration(Antognini et al 2013)[55] measured rpµH =
0.84087(39). This value was subsequently confirmed with an improved appa-
ratus. The experiment cleverly measures a line in a nearly ideal experimental
regime. It is in close conjunction with well-known water absorption lines that
directly calibrate the laser frequency. It also directly observes the resonance in
the spectra of electrons from muon decay. The simplicity and quality of the ex-
periment and its theory make a strong case that the parameter measured in µH
is the most reliable measurement of “the proton size.”
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The muonic deuterium charge radius rpµD is a powerful consistency check18.
Pohl et al[2] mention the isotope shift of the 1S2S transition19 and its deter-
mination of r2

peD − r2
peH = 3.82007(65) fm2 to very high precision. Re-

placing rpeH → rpµH predicts rpeD = 2.12809(31). This is quite compat-
ible with 2.1286(93) from adjustment 11 from Table XLV of C06, which is
the final fitting method using only deuterium data. However the high preci-
sion of the difference ties rpeD and rpeH together. Then the C06 final value of
rpeD = 2.1402(28) is 4.1σ away from its own deuteron-based determination.
Since that time, CREMA[13] has measured the Lamb shift in muonic deuterium
directly, obtaining rµD = 2.12562(78), which is consistent with its own find-
ings. Due to effects disturbing the global fits C10 and C14 do not use the µH
or µD data, which is quite justified given their stated objective.

As Ref. [2] discusses, the multiple 2-parameter fits (Figure 12) produce a
value R∞(µH) = 10973731.568160(16)m−1, whose central value disagrees
with C10 by 4.9σ. But that does not mean that every analysis would revise
R∞ by the same amount when using rpµH . Everything depends on the analysis
method, the data selected for the comparison, and the theory. Just as with the
anomalous moments, the contribution of new physics causes a degeneracy in
fitting parameters. The formula[56] is

∆Etot(α, rpµH , αX mX , mred)

= ∆E(α, rpµH) + +109(m4
Xξ)/(2αmred(1 +mX/(αmred))

4), (17)

where mred is the reduced mass of the atom. Observing a given value for
∆Etot cannot determine rpµH or the X-contribution separately, but only the
sum shown. The MUSE experiment seeks to measure µp scattering at low mo-
mentum transfer, which will contribute more information, especially if there is
a new muon-specific interaction.

4.7. Theoretical Uncertainties: The Wild Card

There are no universal rules for incorporating estimated theory uncertainties in
data analysis. Barlow[57] has explained theory uncertainty is an intrinsically
Bayesian issue. For example, the method called “chi-squared with pull” (Eq. 2)

18While muonic atoms with larger nuclei beginning with He3 are fascinating, the uncertainties
of nuclear theory quickly become problematic for using such measurements to resolve the proton
size problem.

19Most of the theoretical uncertainties inherent in the 1S2S cancel in the isotope shift.
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adds new parameters δj to the theory and assumes the δj are normally distributed
about zero with estimated uncertainties σ2

δj
. The results then depend on σδj ,

which are essentially free parameters representing one?s belief in the theory.
The Appendix of Ref. [58] reviews this and warns that fitted outputs can

be unexpectedly sensitive to the σδj . The method tends to punish high confi-
dence in theory, and reward low confidence, somewhat counter-intuitively. If
the theory is not trusted, then σδj are large, allowing the additive parameters to
shift the theory and fit the data better. However the range of theory parameters
fitting within a given confidence level is also increased, downgrading parameter
resolution. High confidence in theory is represented by small σδj that prevents
additive parameters from helping the theory. Like all Bayesian procedures the
results depend on one’s beliefs about the theoretical uncertainties σδj , known
as priors. The process of fitting the δj can be bypassed (in Bayesian terms,
concealed) if one marginalizes over the distribution of priors. For a normal
distribution that replaces σ2

exp−i → σ2
exp−i + σ2

δ−i in the denominators of χ2.
Add theory and experimental errors in quadrature. The formula automates a rule
that if theory uncertainties are sufficiently small compared to experimental ones,
they have no effect.

Almost by definition, theoretical uncertainties must be smaller than experi-
mental ones to discover experimental anomalies. (When the opposite happens,
the theory is inadequate to confront the data, and discrepancies do not become
anomalies.) The decision that anomalies exist takes as a starting point that the-
ory errors are not the leading candidate for explanation. As consistent, almost
all of the data and theory elements of our study have been repeatedly examined
to rule out an important role for theoretical uncertainty, or avoid it when present.

For example, the theory of the muonic Lamb shift[59] is beautifully simple,
compared to the electronic Lamb shift. The proton size contribution is ten mil-
lion times larger than in electronic hydrogen, and almost all of it comes from
first order perturbation theory. The muonic Lamb shift is theoretically robust,
and calculations are complete. Higher order corrections make small contribu-
tions, and they have been calculated from first principles.

The theory of the electron anomalous moment is quite difficult. It has only
been computed to the highest precision by one group. We are in no place to crit-
icize this tremendous body of work. Yet significant mistakes have been found
in the past. We have no insight to estimate the theoretical uncertainty.

The theory of electronic hydrogen and deuterium is extremely complicated.
The estimated theoretical uncertainties of αlogα series expansions do not al-
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ways agree with calculations done after the estimates. Higher order terms are
not reliably of order α/π relative to lower order ones. Instead they tend to be
much larger, so that theory uncertainties are routinely underestimated. Almost
all of the electronic hydrogen and deuterium spectra are all fit to within a frac-
tion of the experimental uncertainty with χ2/dof < 1. That is evidence that
theory uncertainty is not larger than the experimental uncertainties. It is not
evidence for smaller theory uncertainties that are sometimes estimated.

In summary, any method increasing theory uncertainty makes fitting data
and explaining experimental anomalies easier. It improves fits by decreasing
χ2 while decreasing parameter resolution. Conversely, a goal to minimize un-
certainties on fitted parameters automatically chooses to minimize theoretical
uncertainties. How to assess theory uncertainties is ultimately a procedural de-
cision. Exploring the effects of theory uncertainties is one of the reasons the
Constant Finder site exists.
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