

PRadII - DRad Experiments Current Status and Plans

Jingyi Zhou

Duke University For the PRad-DRad Collaboration **CLAS Collaboration Meeting July 2023**

Acknowledgment: This work is supported in part by the U.S. Department of Energy under Contract No. DE-FG02-03ER41231.

Outline

- Proton charge radius and PRad experiment
- PRad-II experiment (PR12-20-004)
- DRad experiment (PR12-23-011)
- Hidden Sector Particles/X17 search experiment (PR12-21-003)

Proton root-mean-square charge radius

• The proton is the primary, stable building block of nearly all visible matter in the Universe.

Proton rms charge radius r_p — an important quantity of the proton:

- Understand how QCD works in the non-perturbative region
- Important input to the bound-state QED calculations, the proton finite size contributes to the muonic H Lamb shift $(2S_{1/2} 2P_{1/2})$ by as much as 2%
- Impacts the determination of the Rydberg constant R_{∞}

Unpolarized e-p elastic scattering

• In the Born approximation (one photon exchange):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p^2}(Q^2) + \frac{\tau}{\varepsilon} G_M^{p^2}(Q^2)\right)$$

$$Q^{2} = 4EE' \sin^{2}(\theta/2)$$

$$\tau = Q^{2}/(4M_{p}^{2}) \quad \varepsilon = [1 + 2(1 + \tau) \tan^{2}(\theta/2)]^{-1}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{reduced} = G_M^{p^2}(Q^2) + \frac{\varepsilon}{\tau} G_E^{p^2}(Q^2)$$

- G_E^p and G_M^p can be extracted using Rosenbluth separation
- At very low Q^2 region, cross section dominated by G_E^p , one may also extract G_E^p assuming G_M^p in certain form.

Proton charge radius puzzle

 $\sim 8\sigma$ discrepancy between muon and electron based measurements

The proposed PRad-II experiment

PRad result: $r_p = 0.831 \pm 0.007$ (stat.) ± 0.012 (sysm.)fm supports a smaller r_p

- \rightarrow PRad has not reached its ultimate precision for this experimental technique
- \rightarrow Possible difference between proton radius from electronic vs. muonic system
- \rightarrow Need higher precision to investigate the discrepancy between PRad and Mainz-2010

- Based on the PRad experimental technique
- Three beam energies, E = 0.7, 1.4 and 2.1 GeV to increase Q^2 range
- Even lower $Q^2 \sim 10^{-5} (GeV/c)^2$
- Upgrades to the original detectors, new detectors, new calculations...
- Overall uncertainty reduced by **3.8** times compared to PRad

 PRad-II experiment(PR12-20-004), the only "A" rating among all proposals submitted in June 2020

- 29 cm diam x 5.5 cm long target cell
- 4 mm diam holes open at front and back kapton foils, allows beam to pass through
- Target thickness: $\sim 2 \times 10^{18}$ atoms / cm²
- remove major background source

Nucl.Instrum.Meth.A 1003 (2021) 165300

- 25 cm downstream from the target center
- Four $7 \times 5 \times 0.5$ cm³ tiles of plastic scintillators
- Each tile attached to a linear stage in x/y direction
- Identify e-p elastic events and Møller events at 0.5~0.8 degrees

- 5 m long two stage vacuum chamber, further remove possible background source from the electron multiple scattering
- Vacuum chamber pressure: 0.3 mTorr

Tracking detectors

- Each GEM plane: two large area GEM chambers, small overlap region in the middle
- Provide excellent tracking for the scattered electrons
- Better control of beam line background from the upstream collimator, especially at very small angles (electron scattering angle less than 1 deg)

Upgraded Hybrid Calorimeter (HyCal)

Upgraded HyCal:

- Replace lead-glass modules with PbWO₄ modules to have more uniform and better resolution, suppress inelastic contribution
- Convert to flash-ADC based readout to increase data taking rate

PRad-II

 The mentioned upgrades in hardware combines with the planned NNLO radiative correction calculations reduces the overall uncertainty by a factor of 3.8 compared to PRad

Deuteron

- Excellent laboratory to study QCD in nuclei
- The simplest and lightest nucleus in nature
- The only bound two-nucleon system
- Effective neutron target
- Various theoretical calculations

• Deuteron rms charge radius: an ideal observable to compare experiments with theories

Hydrogen-2, deuterium

mass number: 2

$$r_d \equiv \sqrt{\langle r_d^2 \rangle} \equiv \sqrt{-6 \frac{dG_c^d(Q^2)}{dQ^2}} \Big|_{Q^2 = 0}$$

 Q^2 : Four momentum transfer G^d_C : Deuteron charge form factor

Unpolarized e-d elastic scattering

• In the Born approximation (one photon exchange):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[A(Q^2) + B(Q^2)\tan^2\frac{\theta}{2}\right] \qquad Q^2 = 4EE'\sin^2(\theta/2)$$

A and B are structure functions related to the deuteron charge (G_C^d) , magnetic (G_M^d) and quadrupole (G_Q^d) form factors: G_{cd}, G_{Qd}, G_{Md}

$$A(Q^{2}) = G_{C}^{d^{2}}(Q^{2}) + \frac{2}{3}\tau G_{M}^{d^{2}}(Q^{2}) + \frac{8}{9}\tau^{2}G_{Q}^{d^{2}}(Q^{2})$$
$$B(Q^{2}) = \frac{4}{3}\tau(1+\tau)G_{M}^{d^{2}}(Q^{2}) \qquad \tau = Q^{2}/(4M_{d}^{2})$$

- At very low $Q^2(\text{DRad})$, cross section dominated by G_C^d , one may extract G_C^d by assuming G_M^d and G_Q^d in certain forms from parametrizations based on the data.
- The rms charge radius can be obtained from the slope of the charge form factor G_C^d at $Q^2 = 0$:

$$r_d \equiv \sqrt{\langle r_d^2 \rangle} \equiv \sqrt{-6 \frac{dG_c^d(Q^2)}{dQ^2}} \Big|_{Q^2 = 0}$$

The deuteron charge radius from e-d scattering

July 14, 2023

The highlight of DRad experiment

- DRad proposal(PR12-23-011): calorimetric method with windowless gas flow target based on PRad-II experiment(PR12-20-004)
- Measure *e-d* elastic cross sections at very low Q^2 range: $[5 \times 10^{-3} - 1.3]$ fm⁻² / $[2 \times 10^{-4} - 5 \times 10^{-2}]$ GeV²
- Two beam energies, E = 1.1 and 2.2 GeV to increase Q^2 range
- A new two-layer cylindrical recoil detector for reaction elasticity
- Veto counters for timing (PrimEx veto counters)
- Simultaneous detection of $ee \rightarrow ee$ Møller scattering process to control systematics

DRad experiment apparatus

Si-strip Cylindrical Recoil Detector inside the target cell

Detect recoil deuteron, proton background, provide information:

- Timing & Azimuthal angle
- Energy

Based on the CLAS12 Barrel Silicon Tracker (SVT)

- 20 panels of twin, single sided Si-strip detectors (42x52 mm²), 20 sided polygon arrangement with around 13 cm radius
- Thicknesses:
 200 μm (inner layer), 300 μm (outer layer)
- 256 strips on each sensor: angular resolution 5 mrad (φ) 20 mrad (θ)
- Inactive SiO_2 layer can be as thin as 0.5 um

CLAS12 Technical Design Report, 2008 (https://www.jlab.org/Hall-B/clas12_tdr.pdf); CLAS12 Detector documentation (http://clasweb.jlab.org/clas12offline/docs/ detectors/html/svt/introduction.html)

July 14, 2023

The recoil detector calibration at TUNL

• The Si strip detector (SSD) can be calibrated using e-p elastic run on hydrogen and with the 2.5~13 MeV p/D beam from the Tandem accelerator at TUNL.

Radiative Correction (RC) Calculations

- Complete elastic e-d NLO cross section including the lowest order radiative corrections beyond the ultrarelativistic limit has been calculated
- Based on the ansatz in the PRad RC calculation and used the Bardin-Shumeiko infrared divergence cancellation method [I. Akushevich et al. Eur. Phys. J. A 51.1(2015)]

- An event generator is developed and the total correction to the elastic e-d Born cross section in the DRad kinematics is calculated
- The uncertainty of the NLO calculation is estimated, taking into account higher-order contributions, calculation assumptions, and differences between various recipes
- The paper is to be submitted to arXiv and European Physical Journal A

DRad projection

Item	Uncertainty	Item
	(%)	
Event selection	0.110	Statistical uncertainty
Radiative correction	0.045	Total correlated terms
HyCal response	0.043	GEM efficiency
Geometric acceptance	0.022	Inelastic e-d process
Beam energy	0.008	Efficiency of recoil detector
Total correlated terms	0.13	Total

The most precise single measurement from e-d elastic scattering

July 14, 2023

Uncertainty (%)

0.05

0.13

0.03 0.024

0.15

0.21

Hidden Sector Particles/X17

- The existence of the dark matter (DM) is well established by astronomical measurements
- No direct information about the DM composition

- Small-scale structure in astrophysical observations and the 4.2- σ disagreement between experiments and the standard model prediction for the muon anomalous magnetic moment motivated new DM models and candidates, such as the hidden sector DM (HSDM) models in 1~100 MeV mass region
- ATOMKI Beryllium Anomaly suggests a new particle with a mass of 16.84 MeV, dubbed X17

Hidden Sector Particles/X17 Search Experiment

Summary

- PRad-II experiment:
 - Reach ultimate precision for the PRad experimental technique
 - Investigate possible difference between proton radius form e vs. μ system
 - Investigate the discrepancy between PRad and Mainz-2010
- DRad experiment:
 - Extract the e-d cross section independently from the e-p cross section
 - Perform the most precise e-d scattering measurement at very low Q^2 range
- Hidden Sector Particles/X17 search experiment:
 - Uniquely cost effective search for hidden-sector particles in 3~60 MeV mass range
 - Expect to run in 2024

Acknowledgment: This work is supported in part by the U.S. Department of Energy under Contract No. DE-FG02-03ER41231.

The PRad experiment overview

- Magnetic-spectrometer-free calorimetric method
- $E_{beam} = 1.1, 2.2 \text{ GeV}, \theta' = 0.7^{\circ} \sim 7.0^{\circ}$
- Covers two orders of magnitude in low Q^2 range in one fixed setting: $[2 \times 10^{-4} \sim 6 \times 10^{-2}] (GeV/c)^2$

Xiong, W., et al., 2019, "A small proton charge radius from an electronproton scattering experiment," Nature (London) 575, 147–150

- Unprecedented low $Q^2 (\sim 2 \times 10^{-4} (GeV/c)^2)$
- A windowless H₂ gas flow target removes major background source
- High resolution, large acceptance hybrid calorimeter detect and measure the electron energy
- Large area GEM detector for position measurement
- Simultaneous detection of $ee \rightarrow ee$ Møller scattering process for normalization
- Extract the radius with precision from sub-percent cross section measurement

DRad experiment apparatus

• The major background for the e-d elastic scattering is the e-d inelastic breakup process:

$e+d \rightarrow e+p+n$

• Particle identification between deuteron and proton: measure the time-of-flight difference between the recoil detector and the HyCal

Hidden Sector Particles Search Experiment

Forward angle electroproduction on a heavy nucleus

 $e^- + Ta \rightarrow e' + \gamma^* + Ta \rightarrow e' + X + Ta$, with $X \rightarrow e^+e^-$

All 3 final state particles will be detected in this experiment:

- The scattered electron and the pair produced $e^+e^- -$ will be detected using a pair of coordinate detectors and high resolution calorimeter
- As the only magnetic spectrometer free experiments the JLab experiment has an unique technique for background suppression

Signal: Bremsstrahlung production of X

The highlight of DRad experiment

DRad proposal: PR12-23-011

- Measure *e-d* elastic cross sections at very low Q^2 range: $[5 \times 10^{-3} - 1.3]$ fm⁻² $[2 \times 10^{-4} - 5 \times 10^{-2}]$ GeV²
- Two beam energies, E = 1.1 and 2.2 GeV to increase Q² range and control systematics.

- Experimental method based on PRad method and upgraded PRad-II (PR12-20-004): [*W. Xiong et al.* Nature 466 (2010) 213-216; *H. Gao and M. Vanderhaeghen,* Rev. Mod. Phys. **94**, 015002]
- Magnetic-spectrometer-free calorimetric experiment;
- Windowless deuterium/hydrogen gas flow target to reduce background;
- Two planes of tracking detector for better scattered electron tracking (PRad-II);
- Cylindrical recoil detector for reaction elasticity (new);
- Veto counters for timing (PrimEx veto counters)
- That will allow:
- > Measure cross sections in one kinematical settings for a large Q^2 range;
- \blacktriangleright Simultaneous detection of *ee* \rightarrow *ee* Møller scattering process to control systematics;
- Measure e-d elastic cross section to subpercent precision

PID and Event selection

Comprehensive Geant4 simulation of the experiment was developed and used for studying the detection thresholds and backgrounds.

Proton from breakup vs elastic recoil deuteron (Electro-disintegration rates are < 6% of the elastic rates)

July 14, 2023

The robust fitter study for PRad vs DRad

- *Rational*(1,1) does not match G_C^d data at higher Q^2 range \rightarrow search for possible new fitters
- Limited number of data-driven G_C^d parameterizations \rightarrow generalize the robustness test method

Abbott I:
$$G_c^d(Q^2) = G_{C,0} \cdot \left[1 - \left(\frac{Q}{Q_c^0}\right)^2\right] \cdot \left[1 + \sum_{i=1}^5 a_{ci}Q^{2i}\right]^{-1}$$

Parker:
$$G_c^d(Q^2) = G_{C,0} \cdot \left[1 - \left(\frac{Q}{Q_c^0}\right)^2\right] \cdot \left[\prod_{i=1}^5 (1 + |a_i|Q)\right]$$

Abbott II:

$$G_{c}^{d}(Q^{2}) = \frac{G^{2}(Q^{2})}{(2\tau+1)} \cdot \left[\left(1 - \frac{2}{3}\tau \right) g_{00}^{+} + \frac{8}{3}\sqrt{2\tau}g_{+0}^{+} + \frac{2}{3}(2\tau-1)g_{+-}^{+} \right]$$
$$g_{00}^{+} = \sum_{i=1}^{n} \frac{a_{i}}{\alpha_{i}^{2} + Q^{2}} \quad g_{+0}^{+} = Q \sum_{i=1}^{n} \frac{b_{i}}{\beta_{i}^{2} + Q^{2}} \quad g_{+-}^{+} = Q^{2} \sum_{i=1}^{n} \frac{c_{i}}{\gamma_{i}^{2} + Q^{2}}$$

$$G_{c}^{d}(Q^{2}) = G_{C,0} \cdot e^{-\frac{1}{4}Q^{2}\gamma^{2}} \cdot \sum_{i=1}^{N} \frac{A_{i}}{1 + 2R_{i}^{2}/\gamma^{2}} \cdot \left[\cos(QR_{i}) + \frac{2R_{i}^{2}}{\gamma^{2}} \frac{\sin(QR_{i})}{QR_{i}}\right]$$

July 14, 2023

Model dependent study in r_d extraction

- Various functional forms were tested with modern parameterizations of the deuteron form factors, using DRad kinematic range and uncertainties.
- Fixed Rational (1,3) was identified as a robust fitter with lowest uncertainties

$$= p_0 \frac{f_{\text{fixed Rational}(1,3)}(Q^2)}{1 + a_1 Q^2}$$
$$= p_0 \frac{1 + a_1 Q^2}{1 + b_1 Q^2 + b_{2,\text{fixed}} Q^4 + b_{3,\text{fixed}} Q^6}}{r_{\text{fit}} = \sqrt{6(a_1 - b_1)}}$$

July 14, 2023

The deuteron charge radius puzzle

Independent of the famous "Proton Charge Radius Puzzle"

• ~6 σ discrepancy between μD spectroscopy results and CODATA-2014 value

• Uncertainties in previous e-d experiments are too large to resolve the puzzle

34