ERR Charge – PRad-II #4 Recommendation scattering angle(degree) The beam background contributions and associated uncertainties presented at the review were based on the beam halo level of 10-7, consistent with the original PAC proposal. On the other hand, the beam halo requirements were modified to 10-5 during the review. The beam background contributions and the corresponding uncertainties should be evaluated for beam halo levels of 10-5. Alternatively, the capability to measure the beam halo down to the level of 10-7 should be demonstrated. #### Black curve: - Bigger upstream tagger collimator - 10^{-7} halo level, - 4% background to signal ratio at low angles. #### **Red curve:** - Smaller upstream tagger collimator - 10^{-5} halo level. - Background ratio reduced to 0.1% level at low angles. ### Magenta curve: - Smaller upstream tagger collimator - 10^{-7} halo level - background ratio 0.002%. ## ERR Charge – PRad-II #2 Recommendation #### Recommendation:← A plot of reduced cross section vs Q^2 showing signal events and expected background events would help everyone see the potential for the background correction to introduce systematic errors into the radius determination. \leftarrow signal and background 0.7GeV at 20nA • Result based on beam halo level of 10⁻⁵, dominated by target cell window (c) • ~9% total background to signal ratio at 0.7GeV, no obvious angle dependence. - In PRad data, moller background ratio is $\sim 1.7\%$ (c d, coming from halo hit on target cell win.) - Simulation based on halo level of 10^{-5} , moller background ratio is also around 1.7%, same with PRad data - As the simulation match the PRad data very well, could think PRad had a halo level of 10^{-5} # Halo Background Subtraction Uncertainty - Assume 1 empty target run after every 3 production runs(similar with PRad) - 7 PAC days for 0.7GeV, in total 126 production runs and 42 empty target runs. - Assume halo $\pm 10\%$ fluctuation over time (number from PRad data), carry out 42 samplings through out the total period to get the average syst. uncertainty from time variation. - The uncertainty of background measurement due to background fluctuation is 0.89%. For ~10% background ratio, capable to keep 0.1% systematic uncertainty of background subtraction. ## Halo Background Subtraction Uncertainty - 1 empty target run after every 3 production runs - 10% background ratio in each bin - The projected syst. uncertainty of subtraction due to background statistics