

Progress Report on X17 Bumphunt Infrastructure

Emrys Peets Joseph Bailey

Stanford University SLAC National Accelerator Laboratory

Outline

- Introductions
- Personal Project looking at X17 Parameter Space and leptonic coupling
- Background in Bumphunting
- X17 Background Generation
- pyBumpHunter
- Next Steps

https://www.overleaf.com/read/zpzknkkkqrmk#bef878

Internal Note: X17 Collaboration Bumphunt Infrastructure and Methodology

Emrys Peets*1,2, Joseph Bailey¹

Quick Introduction

Emrys Peets

- Rising 6th year Stanford Physics PhD Candidate
- Advisors: Tim Nelson (SLAC), Philip Schuster (SLAC, Stanford)

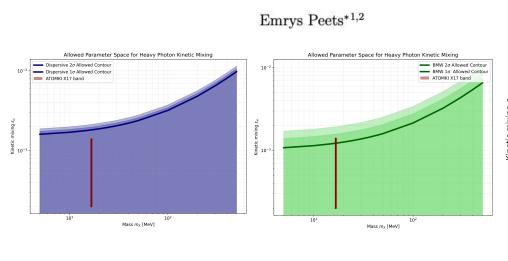
Joseph Bailey

- Rising 3rd year Stanford Undergraduate
- Experience with Python, ROOT, fast simulation

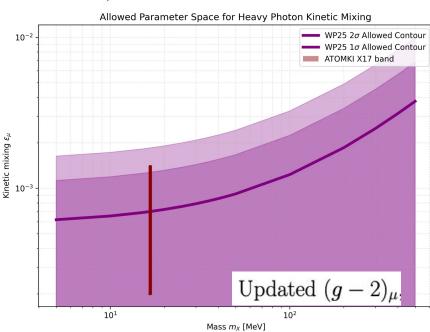
Personal Interest

Updated $(g-2)_{\mu}$, $(g-2)_{e}$ and PADME-Favored Couplings Narrowly Compatible with the Preferred Region of ATOMKI X17,

Given a Protophobic Interpretation



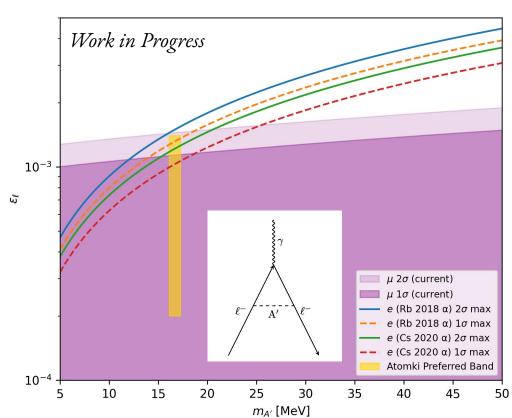
Previous Theoretical Models



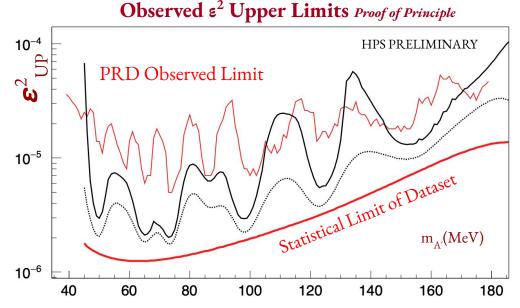
- Narrow overlap with favored electron coupling from most recent fine structure measurements
- NA48/2 necessitates protophobic coupling

NA48/2 Decay Chain
$$\pi^0 o \gamma A' o \gamma e^+ e^-$$

$$4.2 \times 10^{-4} \lesssim \varepsilon \lesssim 5.6 \times 10^{-4}$$
NA64
Padme



- Primary Prompt A` Resonance Search Analyst for Heavy Photon Search Collaboration
- Performing Global Functional Form Fitting Technique as Core Methodology
- Mentoring one Stanford Undergrad, and one UCLA undergrad on Gaussian process regression bumphunt techniques

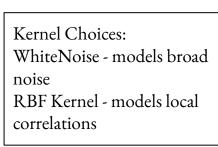


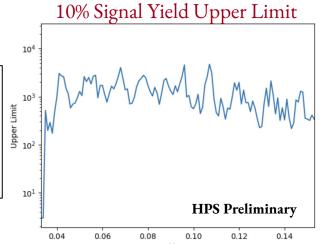
Application of GPR to HPS Datasets

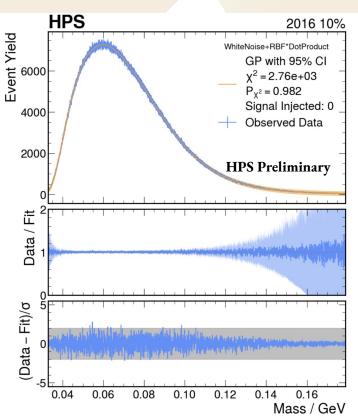
SLAC

The GP model provides a strong fit to the datasets with well-defined uncertainty estimates.

Preliminary Upper Limits determined to be competitive with functional form fitting.







from Aidan Hsu's work

7

Progress on X17 Collaboration Bumphunt Infrastructure

SLAC

Internal Note Documenting Progress:

- https://www.overleaf.com/read/zpzknkkkqrmk#bef878

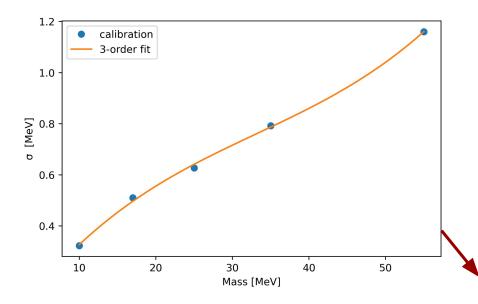
Generated Toy Distribution with Signal Injected at 17 MeV and 40 MeV

- Gaussian Signal Injection [exaggerated signals for illustrative purposes]
- Poissonian Sampling (stat. variance of square root of predicted value)
- added bin-by-bin jitter (gaussian of 10% predicted value)
 - will remove this for next stage

pyBumpHunter Software Package

- proof of principal results gotten, will refine
- promising methodology!

Base Mass Resolution



Can fit using different shape as necessary

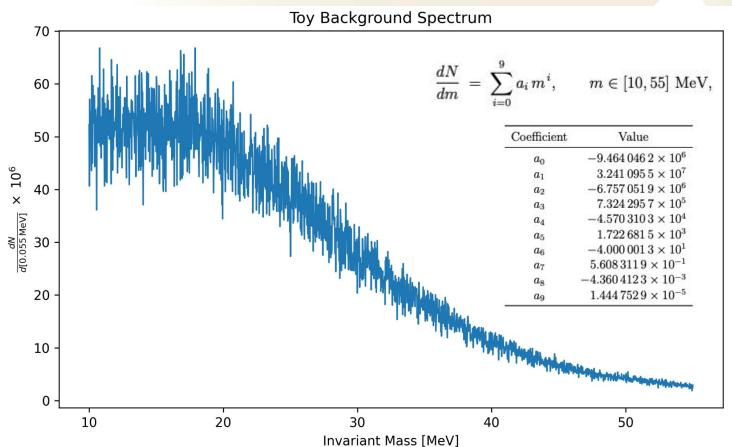
Initial Calibration Values (From Rafo)

Invariant mass m_i [MeV]	1σ mass resolution $\sigma_i~[\mathrm{MeV}]$
10	0.3225
17	0.5100
25	0.6270
35	0.7925
55	1.1600

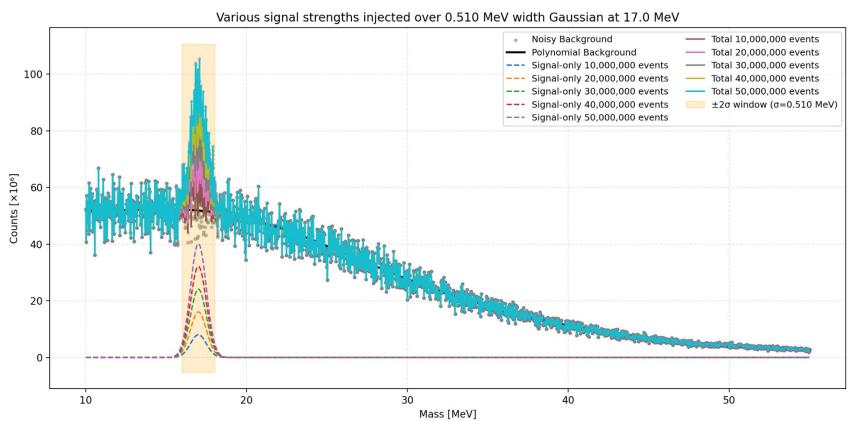
Assuming Natural Width of X17 << Mass Resolution

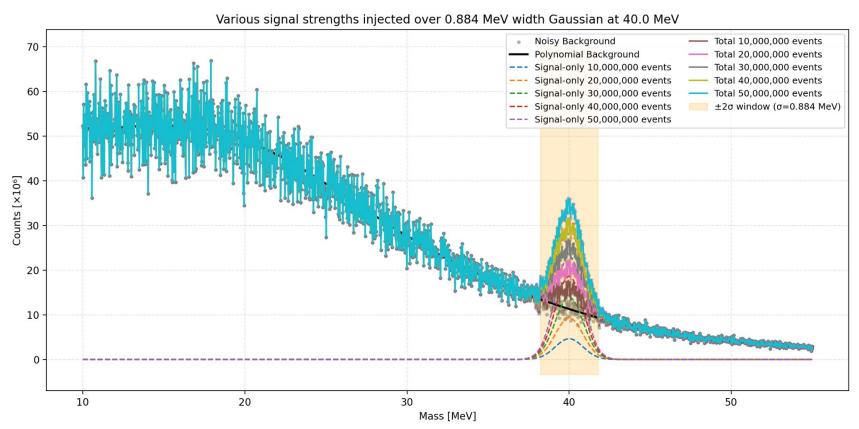
$$S(m; m_0, \sigma) = \frac{N_{\text{sig}}}{\sigma \sqrt{2\pi}} \exp \left\{ -\frac{1}{2} \left(\frac{m - m_0}{\sigma} \right)^2 \right\}$$

Base Background Distribution



17 MeV Toy Distributions





- pyBumpHunter is a python implementation of the BumpHunter algorithm described in <u>arXiv:1101.0390, G. Choudalakis</u>
- Accounts for the "look-elsewhere effect" by using the BumpHunter test statistic

$$t = -\ln p_{\min},$$

- and comparing this with generated background-only pseudo-experiments
- Can also perform signal injection tests
 - iteratively determine sensitivity given a background distribution

Changes to pyBumpHunter

SLAC

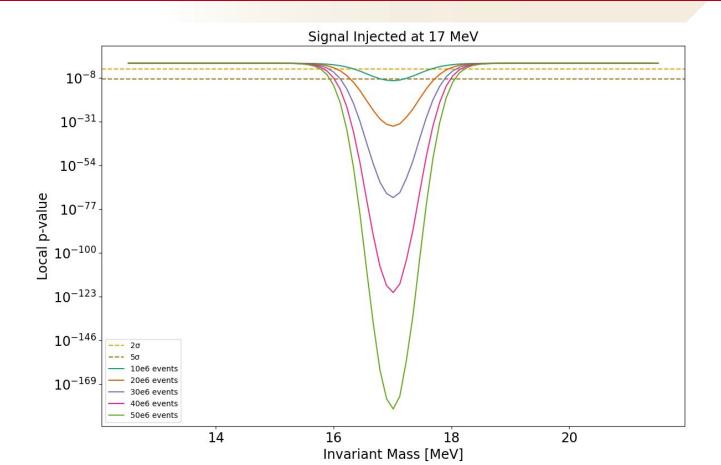
The GitHub release contains some bugs that prevent pyBumpHunter from running properly

In pyBumpHunter/bumphunter_1dim.py:

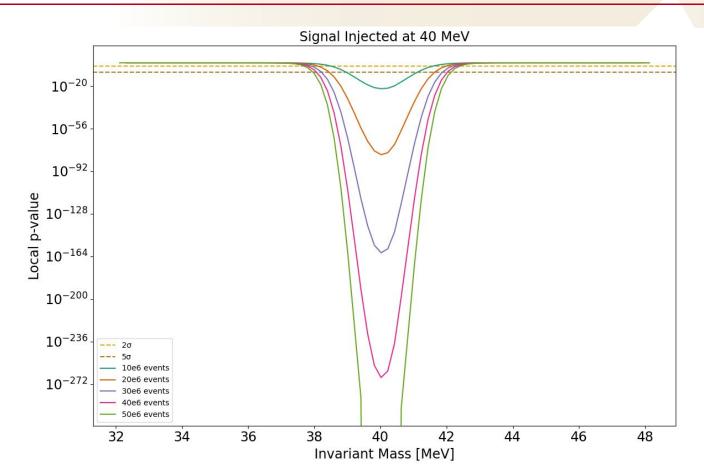
- lines 1511, 1983 uses deprecated numpy behavior
- line 1891 needs to copy the looping behavior at line 1320

- We run pyBumpHunter on the toy distributions with signal injected at 17 and 40 MeV.
- The window size is twice the mass resolution and the step size is one fourth the mass resolution.
- The bump hunt finds local p-values for each window, then generates 10,000 pseudo-distributions and compare their BumpHunter statistics with the observed data.

pyBumpHunter Significances [17 MeV]



pyBumpHunter Significances [40 MeV]

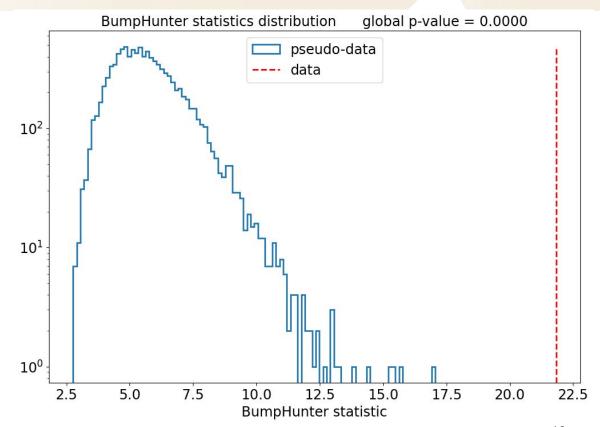


Injected Signal Statitics

SLAC

- The BumpHunter statistics for 10 million events injected at 17 MeV.

- 0 / 10,000 pseudo-data distributions have statistics larger than the data, so we record a global p-value of 0.



- Work Through Upper Limit Scans for:
 - Signal Yield
 - Coupling

$$CL_s(\mu) = \frac{p_{\mu}}{1 - p_b}$$

$$\mathrm{CL}_s(N_{sig}^{up}) = 0.05$$

$$\epsilon^2 = \frac{2\alpha N_{\text{sig}}^{\text{up}}}{3\pi m_{A'} f_{\text{rad}} \frac{dN_{\text{bkg}}}{dm}}$$

- Determine how much run time necessary to hit PADME Target
 - Ideally with estimates at 3, 4, 5 sigma
 - should come from upper limits and number of events
- Iron Out Classical Bumphunting Infrastructure
 - need to create a version where background model is **not known a priori**
 - Data can have unexpected shape!
 - Perhaps merge pyBumpĤunter with GP methodologies

With real data, recommend implementation of gaussian process regression techniques.

- Contacted BaBar, APEX, Belle-2 for their invariant mass histograms for global fits in these regions all using a fundamentally similar fit model to what will be used on HPS 2015, 2016, 2019, 2021 datasets

- ^Postdoc proposal, but will pursue over the next several months regardless

Thank you for listening!

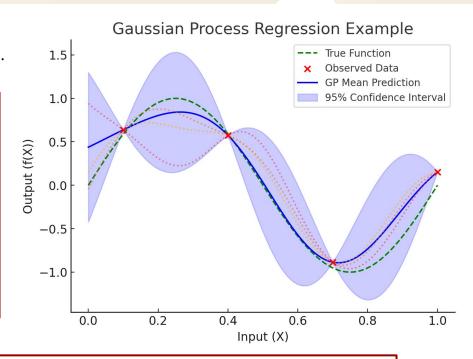
Extra Slide: Understanding Gaussian Process Regression

Understanding Gaussian Process Regression

Collaborative effort with Tom Eichlersmith (Minnesota, PhD), Aidan Hsu (Stanford Undergraduate), Takumi Britt (High School).

What is Gaussian Process Regression (GPR)?

- A **flexible, non-parametric Bayesian approach** that models distributions over functions.
- Unlike traditional regression, **GPR** does not assume a fixed set of parameters—it learns a distribution of possible functions.
- **Built-in uncertainty quantification** makes it ideal for noisy and complex datasets.



The kernel function (covariance function) governs how data points interact and influence one another.

The choice of kernel shapes the model's **smoothness**, **flexibility**, **and generalization ability**, making it crucial for capturing underlying data patterns.