

Measurement of Compton scattering cross section at a few GeV energy

Li Ye Mississippi State University for the PrimEx-II collaboration

This work is supported in part by the U.S. Department of Energy and the National Science Foundation under Contacts No. DE-FG02-07ER41528 & NSF MRI PHY-0079840.

- Physics Motivation
- Experimental Setup
- Event Selection
- Cross Section Extraction
- Summary

Physics Motivation

Electron Compton scattering is one of the most fundamental and the best theoreti cally known reaction in QED.

1. Leading order (Figure 1) :

The lowest order Compton scattering diagrams were first calculated by Klein and Nishina in 1929. *The Klein-Nishina formula* :

$$\frac{d\sigma}{d\Omega} = \frac{r_e^2}{2} \left(\frac{E'}{E_0}\right)^2 \left[\frac{E'}{E_0} + \frac{E_0}{E'} - \sin^2\theta_\gamma\right]$$

2.Higher order corrections (Figure2 and 3) :

Include radiative corrections and double Compton scattering. [L. M. Brown and R. P. Feynman, Phys. Rev. 85,231 (1952).] Compton scattering in a few GeV electron energy has not been measured experimentally.

In this experiment:

- Precision measurement of Compton scattering in a few GeV electron energy.
- Validate systematic error for π⁰ lifetime measurement (PrimEx-II).
 APS April Meeting, Columbus, Ohio, 2018

Experimental Set up

Includes :

- 1. Targets : Carbon-I(5% r.l.), Carbon-II(8% r.l.), Silicon(10% r.l.)
- 2. Hall B Photon Tagger
- 3. Hybrid electro-magnetic calorimeter (HyCal)
 - Energy resolution : $\sim 2.5\%$ at 1GeV
 - ✓ Position resolution : ~ 2 mm at 1GeV

Measured:

1.Tagged photon beam energy
 2.Cluster's energies
 3.Cluster's positions

Event Selection

Time Difference (±6.5ns) :

Time difference betwwen HyCal and Tagger

Azimuthal Angle Difference (±20deg) :

 $\Delta \phi$ angle between two clusters in HyCal plane

APS April Meeting, Columbus, Ohio, 2018

Event Selection

Elasticity (-0.4 ~ 0.4 GeV) :

Elasticity = *Photon beam energy* - *Sum of clust*

<u>Cluster Separation (19cm) :</u>

Cluster Seperation, *distance between two cluster*

Event Selection

Kinematic Energy Difference (-0.4 ~ 0.4 GeV) :

Kinematic energy difference = Sum of calculated cluster energies using Compton kinematics

- Sum of measured cluster energies

Yield Extraction

Yield

= Data - e+e- simulation - accidentals
accidentals = estimated accidental coincidences
(using events in the tails of the time difference distribution)

Fit result = e+e- + Compton simulation fit to data

Carbon-I : Carbon(5% r.l.)

Yield Extraction

Yield from Carbon-II(8% r.l.) and Silicon using the same method as in previous slides

Cross Sections as Function of Energies

Experiment/Theory Deviation

Experiment/Theory Deviation

Systematic Study of Cuts Stability

All differences in yield relative to the final result

APS April Meeting, Columbus, Ohio, 2018

Systematic Uncertainties

	Target	Carbon-I	Carbon-II	Silicon
All values are in %	Event selection	0.68	0.88	0.54
	Signal/Background separation	0.17	0.19	0.87
	Acceptance	0.25	0.25	0.25
	Photon beam flux	0.82	0.82	0.82
	Target	0.02	0.04	0.35
	Total Syst.	1.22	1.34	1.79

Integrated Cross Sections

Target	Energy (GeV)	Cross Section (mb)	Theory (mb)	Deviation (%)	Syst. Error (%)	Stat. Error (%)	Total Error (%)
Carbon-I	4.84	0.2806	0.2822	-0.57	+/- 1.22	+/- 0.11	+/- 1.22
Carbon-II	4.84	0.2824	0.2822	0.19	+/- 1.34	+/- 0.21	+/- 1.36
Silicon	4.84	0.2809	0.2822	-0.46	+/- 1.79	+/- 0.39	+/- 1.83

- Compton scattering is one of the fundamental reactions in QED.
- The Compton cross sections for the energy range of 4.4-5.3 GeV were measured with precision of 2% for the first time.
- The Compton results validated that the systematic uncertainties of the PrimEx-II experiment for the pi0 lifetime measurement were controlled at level of 2%.
- Extracted cross sections are in a good agreement with the theory prediction.