<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
        <style type="text/css">
      <!--
      html{color:#555555;}body{line-height:1.5;font-family:'Trebuchet MS','Helvetica Neue',Arial,Helvetica,sans-serif;font-size:87.5%;}h1{font-size:1.6em;}h2.field-label{display:inline-block;font-size:1em;padding-right:5px;min-width:10em;margin:0.3em;}.problem_report{line-height:1.5;max-width:60em;}fieldset.problem_report.resolved
legend{background-image:url();background-repeat:no-repeat;padding-left:18px;}fieldset.problem_report.needs_attention
legend{background-image:url();background-repeat:no-repeat;padding-left:18px;}.problem_report div.field-items{display:inline-block;}div.date-vitals p{font-size:87.5%;}a{text-decoration:none;}.Readme a:link,.Readme a:visited,.Readme
a:active{color:red;}
      -->
    </style>
      </head>
  <body id="mimemail-body" class="elog-logentry-notify">
    <div id="center">
      <div id="main">
        <style>
<!--/*--><![CDATA[/* ><!--*/

div.field-vitals{
    margin: 0.5em 0;
}
div.field-vitals .field-type-taxonomy-term-reference {
    margin: 0.1em 0;
}

article.comment {
  padding-left: 10px;
}
article.comment.odd {
    background-color: #EEEEEE;
}
article.comment.even {
    background-color: #DDDDDD;
}

div.node-content.logentry table{
  width: auto;
  border-collapse: collapse;
  border-spacing: 0;
  border-width: 1px;
}

div.node-content.logentry th{
 border: inherit;
}

div.node-content.logentry blockquote{
  background-color: #FFFFFF;
}

div.node-content.logentry caption{
  font-size: 1em;
  font-weight: normal;
}

table.field-vitals{
   margin-top: 1em;
   margin-bottom: 1em;
   font-size: 87.5%;
}

table.field-vitals th{
   vertical-align: middle;
   text-align: left;
   width: 15%;
   padding: 0.1em;
}

table.field-vitals td{
   vertical-align: middle;
   text-align: left;
   width: auto;
   padding: 0.1em;
}
table.field-vitals td li {
  margin-left: 0;
  list-style-type: none;
  list-style-image: none;
}

table.downtime {
  width: 30em;
  margin-bottom: 1em;
  border: 1px black dotted;
}
table.downtime th {
  text-align: center;
}
table.downtime td {
  text-align: center;
}
tr.caption th {
  border-bottom: none;
}
table.downtime tfoot{
  background-color:#EEEEEE;
}

div.field-name-body{
    margin: 1em 0;
    font-size: 110%;
}
div.date-vitals p{
    margin: .1em 0;
}
article div.ctools-collapsible-container{
    margin-left: -5px;
    clear: both;
}
#comment-form{
  margin-left: 5px;
  border: graytext outset medium;
  -moz-border-radius: 15px;
  border-radius: 15px;
  padding: 1em;
}

div.comments-form-box {
  margin-top: 2em;
  margin-bottom: 5em;
}
h3.comment-title {
    /* display: none; */
}
p.author-datetime{
    font-weight: bold;
}


/*--><!]]>*/
</style><article id="node-712304" class="node node-logentry  contextual-links-region article ia-n clearfix" role="article"><header class="node-header"><h1 class="node-title">
          <a href="https://logbooks.jlab.org/entry/3639399" rel="bookmark">Initial CCAL (NPS prototype) calibration and energy resolution</a>
        </h1>
          </header><div class="contextual-links-wrapper"><ul class="contextual-links"><li><a href="https://logbooks.jlab.org/entry/3639399/edit?destination=email/send">Edit</a></li><li><a href="https://logbooks.jlab.org/entry/3639399/delete?destination=email/send">Delete</a></li></ul></div>  
  <div class="date-vitals">
        <p class="author-datetime">
      Lognumber <a href="https://logbooks.jlab.org/entry/3639399" class="lognumber" data-lognumber="3639399">3639399</a>.        Submitted by <a href="https://logbooks.jlab.org/user/somov">somov</a> on <time datetime="2018-12-16T13:32:13-0500" pubdate="pubdate"><a href="https://logbooks.jlab.org/entries?start_date=1544981533&end_date=1544988733&book=HDCCAL&book=HDLOG">Sun, 12/16/2018 - 13:32</a></time>.        </p>
            
    
    
      
         
   
    
      
    <table class="field-vitals"><tr><th>Logbooks: </th><td><a href="https://logbooks.jlab.org/book/hdccal">HDCCAL</a> <a href="https://logbooks.jlab.org/book/hdlog">HDLOG</a></td></tr><tr><th>Entry Makers: </th><td>somov, berdnik</td></tr></table></div>
  
    
  
    
  <div class="logentry node-content">
    <p>I )  In order to equalize gains on CCAL modules<br />
we performed a HV scan for each module (runs<br />
51824 - 52004). Each CCAL module was positioned<br />
to the photon beam. Energy of beam photons was<br />
determined using tagging detectors. HVs were<br />
computed according  to the required energy range:</p>
<p>- energy deposition of a 10 GeV photon<br />
is required to be around fadc count 3100<br />
(note, the maximum fadc range is 4096 counts)</p>
<p>- we set voltages by requiring the average fadc<br />
amplitude for 4.2 GeV photons to be 1267 fadc<br />
counts. </p>
<p>--------------</p>
<p>After setting voltages, we checked the calibration<br />
(runs 2216 -22364)</p>
<p>Fig 1. FADC amplitudes of CCAL modules corresponding<br />
to 4.2 GeV photons. Sigma of the distribution is<br />
about 1.3 % </p>
<p>Fig. 2 FADC amplitudes of CCAL modules corresponding<br />
to  ~10. GeV photons</p>
<p>Fig. 3.The amplitude ratio (A (10 GeV) / A (4.2 GeV)<br />
The relative width of the distribution is about 0.4 %<br />
(relatively stable performance of all modules).</p>
<p>The HV setting procedure worked well for most<br />
modules except of 10:</p>
<p>We didn't calibrate two modules (5,4) and (-2,-6).<br />
There are 7 suspicious modules (-4,6), (-2,6), (-6,5),<br />
(-4,4), (4,-2), (-6,-4), (5,-5).</p>
<p>For these modules, we adjusted voltages "by hand".<br />
We'll check calibration after we finish with<br />
Compton production runs.</p>
<p>-----------</p>
<p>II ) We used the initial gain calibration to estimate<br />
the energy resolution of CCAL</p>
<p>Fig. 4 Energy distribution for 4.2 GeV photons</p>
<p>- energy deposited in the single CCAL module (curve on the left)</p>
<p>- total energy deposited in 5x5 cells (curve on the right). The<br />
  relative energy resolution (width of the distribution over the<br />
  mean value is about 2%)</p>
<p>We checked different regions in the detector. The typical<br />
energy resolution for 4.2 GeV photons is 2 - 2.3 %</p>
<p>Fig. 5 Energy distribution for 10 GeV photons</p>
<p>- the typical energy resolution is 1.4 - 1.6 %</p>
<p>The energy resolution can be improved after we refine gain<br />
calibration. Two things have to be done: </p>
<p>- gain can be refined by fitting energy distributions in 5x5<br />
  modules to the shower profile  </p>
<p>- data have be taken in a raw fadc mode<br />
  (in Fig. 3 and Fig. 4 the fadc threshold for each module<br />
   was set to 27 MeV)</p>
  </div>
  

  <div class="attachment-box">
      <div class="image-wrapper"><img view_mode="elog_email" class="image-style-plentybig" src="https://logbooks.jlab.org/files/styles/plentybig/public/2018/12/3639399/gain_calib_amp_4_2.png" width="598" height="374" alt="" title="Fig 1. FADC amplitudes of CCAL modules corresponding  to 4.2 GeV photons. " /></div> <div class="image-wrapper"><img view_mode="elog_email" class="image-style-plentybig" src="https://logbooks.jlab.org/files/styles/plentybig/public/2018/12/3639399/gain_calib_amp_10.png" width="598" height="374" alt="" title="Fig. 2 FADC amplitudes of CCAL modules corresponding  to  ~10. GeV photons" /></div> <div class="image-wrapper"><img view_mode="elog_email" class="image-style-plentybig" src="https://logbooks.jlab.org/files/styles/plentybig/public/2018/12/3639399/gain_calib_ratio.png" width="598" height="374" alt="" title="Fig. 3  The amplitude ratio (A (10 GeV) / A (4.2 GeV) The relative width of the distribution is about 0.4 % (relatively stable performance of all modules)." /></div> <div class="image-wrapper"><img view_mode="elog_email" class="image-style-plentybig" src="https://logbooks.jlab.org/files/styles/plentybig/public/2018/12/3639399/row_n4_col_n1_en_4GeV.png" width="498" height="374" alt="" title="Fig. 4 Energy distribution for 4.2 GeV photons. Energy deposited in the single CCAL module (curve on the left). Total energy deposited in 5x5 cells (curve on the right) " /></div> <div class="image-wrapper"><img view_mode="elog_email" class="image-style-plentybig" src="https://logbooks.jlab.org/files/styles/plentybig/public/2018/12/3639399/row_n4_col_n1_en_10GeV.png" width="498" height="374" alt="" title="Fig. 5 Energy distribution for 4.2 GeV photons. Energy deposited in the single CCAL module (curve on the left). Total energy deposited in 5x5 cells (curve on the right) " /></div>  </div>

       
</article>      </div>
    </div>
  </body>
</html>