$\begin{array}{ll} \mbox{PrimEx-}\eta: \mbox{A Precision Measurement of the }\eta\\ \mbox{Radiative Decay Width} \end{array}$

Andrew Smith (for the PrimEx-D(GlueX?) Collaboration

Abstract

The η meson is a unique probe of QCD symmetry breaking. Of particular importance is the $\eta \to \gamma \gamma$ decay, as it proceeds via the chiral anomaly. In the chiral limit, the amplitude for the two photon decay of the pure SU(3) states, η_0 and η_8 , is exactly calculable, and therefore a precision measurement of the η radiative decay width provides both a precision test of this chiral anomaly prediction as well as information about the η - η' mixing angle. In the past, this 2γ decay width has been measured both in a fixed target experiment which utilized the Primakoff effect and in $e^+e^$ collider experiments. However, a large discrepancy between the results of this Primakoff measurement and the average of the collider experiments remains unresolved. The PrimEx- η experiment in Hall D at Jefferson Lab will perform a precision measurement of $\Gamma_{\eta \to \gamma \gamma}$ via the Primakoff method to both resolve this discrepancy, and to improve the overall uncertainty. In this talk the motivation and experimental techniques will be discussed along with a presentation of some data from the experiment's first phase which was completed in the Spring of 2019.