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Quarks Through the Looking-Glass – New Measurement of Parity Violation in Electron-Quark
Scattering

(The Jefferson Lab Hall A Collaboration)
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Parity symmetry, or mirror image symmetry, implies that flipping left and right does not change the laws
of physics. Violation of parity symmetry in the subatomic weak force was discovered in 1957, and parity
violation in electron scattering played a key role in establishing, and now testing, the standard model of particle
physics. One particular set of the quantities accessible through measurements of parity-violating observables is
the electron-quark effective weak couplings, calledC2q ’s, measured directly only once in the past 40 years. We
report here a precise measurement of a specificC2q coupling combination that is five times better than previous
data. These results are the first evidence at more than 95% confidence level that theC2q ’s are non-zero as
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predicted by the electroweak theory of particle physics, and lead to new constraints on interactions beyond the
standard model, particularly on those caused by flipping thequark chirality.

Symmetry permeates nature and is fundamental to all laws
of physics. One such example is the mirror symmetry, also
called “parity symmetry”: a physical system or process is
said to respect such symmetry if it behaves the same when
reflected in a mirror. Laws for electromagnetism, gravity and
the subatomic strong force respect parity symmetry. But the
subatomic weak force does not, as was first observed by C.S.
Wu. Historically, the observation of parity violation played an
important role in establishing the standard model of particle
physics. We report here on a new measurement of the parity-
violating asymmetry in electron-quark scattering and extract
electron-quark weak couplings. Results presented here im-
prove the precision of the vector-electron axial-vector-quark
coupling combination2C2u − C2d by a factor of five, are in
agreement with theoretical predictions, and set constraints on
new interactions beyond the standard model. In today’s par-
ticle physics research led by colliders such as the LHC, our
results provide specific chirality information on electroweak
theory that is difficult to obtain at high energies. The mea-
surement is relatively free of ambiguity in its interpretation,
and opens the door to even more precise measurements in the
future.

In parity-violating electron scattering (PVES) experiments,
one measures an asymmetry that can be expressed as

Aexp =
σ+ − σ−

σ+ + σ−

, (1)

whereσ+(σ−) are the cross sections for scattering longitudi-
nally polarized electrons that are right-handed (left-handed),
meaning their spins are parallel (antiparallel) to the electron’s
momentum. For deep inelastic scattering (DIS) off nuclear
targets (the DIS is defined as scattering in which the electron
interacts with a single quark, independent of the surrounding
quarks and gluons), this asymmetry can be written in a largely
model independent way as [1]

Aexp =
GF Q2

4
√

2πα

[
a1(x, Q2)Y1(x, y, Q2)

+ a3(x, Q2)Y3(x, y, Q2)
]
, (2)

whereGF is the Fermi constant,α is the fine structure con-
stant,Q2 ≡ −q2 with q the four momentum transferred from
the electron to the target,x is called the Bjorken scaling vari-
able that describes the fraction of momentum carried by the
quark struck by the electron,y = (E − E′)/E is the frac-
tional energy loss of the electron withE(E′) the incident
(scattered) electron energy,Y1,3 are kinematic factors, and
the variablesa1,3 are related to the subatomic structure of
the target. (See Methods section for a complete description.)
The first experiment (SLAC E122) to detect parity violation
in electron scattering, lead by C.Y. Prescott [2, 3], provided
results that strongly favored a model attributed to Weinberg,
Salam and Glashow (WSG), establishing it as the staple of

the now highly successful standard model of particle physics.
PVES has subsequently been used as a sensitive probe to study
diverse physics ranging from physics beyond the Standard
Model [4, 5] to the structure of both nuclei [6] and the nu-
cleon [7].

In the so-called tree-level scattering where the electron ex-
change only a single photon or a singleZ boson with the tar-
get, very simple expressions fora1,3 in Eq. (2) emerge for
electron DIS from deuterium:

a1 =
6

5
(2C1u − C1d) , a3 =

6

5
(2C2u − C2d) . (3)

The use of the deterium target simplifies interpretation be-
cause it has equal numbers of up and down valence quarks.
Here theC1u(1d) andC2u(2d) are the effective weak couplings
between the electrons and the up (down) quark, and are pro-
portional to the quark vector and axial weak charges, respec-
tively. The subscripts1 and2 refer to whether the coupling to
the electron or quark is vector or axial-vector in nature:C1u(d)

is the axial-vector-electron vector-quark (AV) coupling,i.e. it
probes parity violation caused by flipping of the electron chi-
rality; C2u(d) is the vector-electron axial-vector-quark (VA)
coupling that is sensitive to parity violation due to flipping of
the quark chirality. In testing the standard model, it is impor-
tant to determine all fourC1u,1d,2u,2d as accurately as possi-
ble, since new interactions could manifest itself in eitherset of
couplings. Experimentally, one could extract both2C1u−C1d

and2C2u − C2d by measuring asymmetries at differentY1,3

values in the DIS regime. However, a precise determination
of 2C2u − C2d is difficult because of its small value (-0.095),
as opposed to2C1u − C1d = −0.719, in the standard model.

The new measurement reported here was performed using
the electron beam at Thomas Jefferson National Accelerator
Facility (JLab), in Virginia, USA. A100 µA, nearly 90%-
longitudinally-polarized electron beam was incident on a 20-
cm long liquid deuterium target held at a temperature of 22 K.
Scattered particles were detected in a pair of spectrometers
that determine the momentum and the direction of the detected
particles to high precisions [8]. To directly accessC2u,2d, the
kinematics were chosen so that the bulk of the detected elec-
trons emerged from the target after undergoing a DIS inter-
action. In contrast, all PVES experiments after SLAC E122
were performed outside the DIS regime, thus could not pro-
vide clean information onC2q.

The size of the asymmetry expected for this measurement
is at the level of10−4. The major challenge comes from the
combination of the high electron event rate, and the high pion
background typical of DIS measurements. This was overcome
by the use of a custom electronic and data acquisition (DAQ)
system with built-in pion rejection capability [9]. The DAQ
successfully counted electrons, event-by-event, at ratesup to
600 kHz. The relative uncertainty in the measured asymme-
tries due to pion background was below5 × 10−4, and that
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due to counting deadtime was below 0.4%. The leading sys-
tematic effect comes from normalizing by the electron beam
polarization, which had a relative uncertainty at the levelof
(1.2-1.8)%. On the other hand, beam stability was not a sig-
nificant issue because of recent advances in the monitoring
and feedback control of the beam, a direct outcome of some
of the PVES studies mentioned earlier.

The high intensity of the JLab beam allowed the completion
of the experiment in just under two months. A total of 35.4
million electrons were counted at two DIS kinematics. The
asymmetry measured atE = 6.067 GeV, 〈x〉 = 0.241, Y1 =
1.0, Y3 = 0.44 and〈Q2〉 = 1.085 (GeV/c)2 is

Aexp = [−91.1 ± 3.1(stat.) ± 3.0(syst.)] × 10−6, (4)

where the〈x〉 and the〈Q2〉 are the values averaged over
the spectrometer acceptance. This is to be compared with
the standard model (SM) expectation ofASM = −87.74 ×
10−6. To allow an extraction ofC1u,1d and C2u,2d, it is
necessary to express the asymmetry in terms of these cou-
plings. This was calculated using the MSTW2008 leading-
order parametrization [10] of parton distribution functions
(PDF). For the kinematics above, it reads:A = (1.156 ×
10−4) [(2C1u − C1d) + 0.348(2C2u − C2d)]. The second
DIS kinematics wasE = 6.067 GeV,〈x〉 = 0.295, Y1 = 1.0,
Y3 = 0.69, 〈Q2〉 = 1.901 (GeV/c)2, and the result is

Aexp = [−160.8± 6.4(stat.) ± 3.1(syst.)] × 10−6. (5)

The standard model expectation isASM = −158.90 ×
10−6, with the coupling sensitivityA = (2.022 ×
10−4) [(2C1u − C1d) + 0.594(2C2u − C2d)]. Details of the
standard model calculation and the uncertainty due to PDF
fits are given in the Methods section.

Using the most recent world data for the couplingC1u,1d,
obtained from PVES [11] and cesium atomic parity violation
experiments [12–14], a simultaneous fit of2C1u − C1d and
2C2u − C2d to our results and the asymmetries from SLAC
E122 was performed and gave:

(2C2u − C2d) |Q2=0 = −0.145± 0.066(total), (6)

where the total uncertainty includes those from PDF fits and
higher order radiative corrections. Here the zero-Q2 values
C2u,2d|Q2=0 are calledgeu,ed

V A (and similarlyC1u,1d|Q2=0 are
geu,ed

AV ) in Ref. [15], where certain electroweak radiative cor-
rections have been applied such that the values in Eq. (6)
can be compared directly to results from other precision ex-
periments and different kind of processes. The values for
C2u,2d|Q2=0 differ from the non-zeroQ2 values accessed in
this experiment by 0.002-0.003 for both the up and the down
quark, at both kinematics. The weak mixing angle extracted
from our asymmetry results iŝs2

Z = 0.2299 ± 0.0043 at the
mass of theZ boson in the modified minimal subtraction (MS)
scheme. This can be compared with the best knowledge on
this quantitŷs2

Z = 0.2312 [16].
The result in Eq. (6) is to be compared with the standard

model prediction2C2u − C2d|Q2=0 = −0.0949 as shown in
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FIG. 1: Results for(2C1u − C1d)|Q2=0 and(2C2u − C2d)|Q2=0

obtained from this experiment alone (light blue ellipse) compared
with SLAC E122 (yellow ellipse) [2, 3]. The latest data onC1 [11–
14] (JLab elasticeN and Atomic Cs) is shown as the cyan vertical
band. The green ellipse shows the combined result of SLAC E122
and the latestC1, while the red ellipse shows the combined result of
SLAC E122, this experiment, and the latestC1. The standard model
value is shown as the black dot. Note that the same scale is used for
the two axes to illustrate the significant difference in our knowledge
of theC1 andC2 couplings.

Fig. 1. One can see that our results have greatly improved the
uncertainty on the effective vector-electron axial-quarkweak
couplingsC2u,2d and is in good agreement with the standard
model prediction. This is also the first direct measurement
of the coupling combination2C2u − C2d that show a devi-
ation from zero. We note that evidence for nonzero values
of theC2u,2d, perhaps a different combination from what we
measured, may have also been observed in experiments mea-
suring the nucleon axial form factors [17]. However, extrac-
tion of C2u,2d from the nucleon axial form factor is model-
dependent, while in DIS the electron probes quarks unam-
biguously. The directness of our approach is an important
feature that makes it possible to reach significantly higherac-
curacy in the future.

A comparison of the present result with the standard model
predictions can be used to set mass limitsΛ below which new
interactions are unlikely to occur. For the case of electron
and quark compositeness and contact interactions, we used
the convention of Ref. [18] and the procedure in Ref. [19].
The limit for the constructive (destructive) interferenceto the
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standard model is:

(Λ)+(−) = v

[
8
√

5π

|(2C2u − C2d)Q2=0|±

]1/2

, (7)

where |(2C2u − C2d)Q2=0|± is the difference between the
standard model value and the upper (lower) confidence bound

extracted from the data,v =
√√

2/(2GF ) = 246.22 GeV is
the Higgs vacuum expectation value setting the electroweak
scale, and the

√
5 is a normalization factor taking into account

the coefficients of theC2u,2d in the denominator. For a 95%
confidence level, we extracted

Λ+ = 5.8 TeV and Λ− = 4.6 TeV , (8)

for the constructive and the destructive beyond-standard-
model physics. Figure 2 illustrates these limits. The limits
set byC1u,1d are determined mostly by previous PVES and
the cesium atomic parity violation results, but this experiment
has clearly improved the limits set byC2u,2d.
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FIG. 2: Mass exclusion limits on the electron and quark composite-
ness and contact interactions obtained from the zero-Q2 values of
2C1u − C1d and2C2u − C2d at the 95% confidence level. The yel-
low contour shows the limit obtained from SLAC E122 asymmetry
results [2, 3] combined with the bestC1 values [11]. The red contour
shows the limit with our new results added.

The strength of our results reported here is that they iso-
late a well-defined combination of the electron-quark contact
interaction. We note that mass limits on the electron-quark
contact interactions have been published by ZEUS [20] and
H1 [21] at HERA. They findΛ+ = 3.3 TeV andΛ− =
3.2 TeV [20], Λ+ = 3.8 TeV and Λ− = 3.6 TeV [21]
on the vector-electron axial-vector-quark term. Similar lim-
its have been published by ATLAS [22] at LHC in the left-
left isoscalar model, which areΛ+ = 9.5 TeV andΛ− =
12.1 TeV [23]. The HERA and the LHC measurements

are sensitive to several different vector and axial-vectorcou-
pling combinations, thus their limits were obtained with the
assumption that besides the particular chirality combination
used in the model, all other contact interactions are zero. This
assumption is unnecessary for the extraction of mass limits
from our results.

In summary, we have measured to a high precision the
parity-violating asymmetry of electron-deuteron deep inelas-
tic scattering and improved our knowledge of the effective
electron-quark weak coupling combination2C2u − C2d by a
factor of five. The results provide the first direct and unam-
biguous evidence that2C2u − C2d differs from zero at more
than the 95% confidence level. They significantly improve
the limits on certain types of new interactions in which it is
the chirality of the quarks that is responsible for the observed
parity violation.

METHODS SUMMARY

The experiment was carried out at the Thomas Jefferson
National Accelerator Facility (JLab). Longitudinally polar-
ized electron beam scattered from an unpolarized deuterium
target. Scattered particles were detected by the high reso-
lution spectrometer pair equipped with a custom electronic
and data acquisition system which separated electrons from
background particles [9]. From the detected countsC and the
beam intensityI integrated over periods of stable beam he-
licity, we computed a ratioσ = C

I that is proportional to the
scattering probability, and from these ratios we computed the
parity-violating asymmetryAexp. Two kinds of corrections
were then made to the asymmetries: an overall normalization
factor and a possible systematic shift due to false asymmetries
arising from backgrounds or helicity correlations in the beam
parameters. The normalization factors include the beam po-
larization (measured by a Moller and a Compton polarimeter),
measurements of scattered electron kinematics, electromag-
netic radiative corrections, and effects from two photon ex-
change between the electron and target. The false asymmetry
corrections were all very small compared to our statisticaler-
ror and included an evaluation of helicity correlations in beam
current, position, and energy and backgrounds such as pions,
scattering from the target aluminum windows, or rescattering
inside the spectrometers. A summary of all corrections and
the asymmetry results are presented in Table I of Supplemen-
tal Information.

To calculate the standard model expectation of the mea-
sured asymmetry and its sensitivity to2C1u−C1d and2C2u−
C2d, we used parton distribution functions (PDF) to calculate
the structure functions ina1,3. Three PDF fits were used. Re-
sults of the calculation are shown in Table II of Supplemen-
tal Information. The variation among all three fits is below
10−6 for the asymmetry, therefore the uncertainty in the ex-
tractedC1,2 due to PDF is quite small. Effects from inter-
actions among quarks inside the target, called “higher twists
effects”, were evaluated by comparing the measured asymme-
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tries at the two DIS kinematics reported here. We found that
our results onC2u,2d are largely not affected by this effect at
the present precision.
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