Kinematics				
	DIS#1		Right DIS#2	
E_b (GeV)	6.067	6.067		
$ heta_0$	12.9°	20.0°		
$E'_0 \; ({ m GeV})$	3.66	2.63		
$\langle Q^2 \rangle_{\rm data} \; [({\rm GeV}/c)^2]$	1.085	1.901		
$\langle x \rangle$	0.241	0.295		
$\langle W \rangle ~(\text{GeV})$	2.073	2.330		
$A_{\rm raw}^{\rm bc}$ (ppm)	-78.45	-140.30	-139.84	
(stat.)	± 2.68	± 10.43	± 6.58	
(syst.)	± 0.07	± 0.16	± 0.46	
Corrections with systematic uncertainties				
P_b	88.18%	89.29	88.73%	
ΔP_b	$\pm 1.76\%$	$\pm 1.19\%$	$\pm 1.50\%$	
$1 + \bar{f}_{\text{depol}}$	1.0010	1.0021		
(syst.)	$< 10^{-4}$	$< 10^{-4}$		
$1+ar{f}_{ m A1}$	0.9999	0.9999	0.9999	
(syst.)	± 0.0024	± 0.0024	± 0.0024	
$1+ar{f}_{ m dt}$	1.0147	1.0049	1.0093	
(syst.)	± 0.0009	± 0.0004	± 0.0013	
$1 + \bar{f}_{\rm rc}$	1.015	1.019		
(syst.)	± 0.020	± 0.004		
$1 + \bar{f}_{\gamma\gamma box}$	0.998	0.997		
(syst.)	± 0.002	± 0.003		
Other systematic uncertainties in $\Delta A_{\rm exp}/A_{\rm exp}$				
$\Delta ar{f}_{\pi^{-}}$	$\pm 0.009\%$	$\pm 0.006\%$	$\pm 0.003\%$	
$\Delta ar{f}_{ ext{pair}}$	$\pm 0.04\%$	$\pm 0.3\%$	$\pm 0.3\%$	
$\Delta ar{f}_{A_n}$	$\pm 2.5\%$	$\pm 2.5\%$	$\pm 2.5\%$	
ΔQ^2	$\pm 0.85\%$	$\pm 0.64\%$	$\pm 0.65\%$	
rescattering background	$\ll 0.2\%$	$\ll 0.2\%$	$\ll 0.2\%$	
target impurity	$\pm 0.06\%$	$\pm 0.06\%$	$\pm 0.06\%$	
Asymmetry Results				
$A_{\rm exp} \ (\rm ppm)$	-91.10	-160.80		
(stat.)	± 3.11	± 6.39		
(syst.)	± 2.97	± 3.12		
(total)	± 4.30	± 7.12		

TABLE I: Asymmetry results on \vec{e}^{-2} H parity-violating scattering from the PVDIS experiment at JLab. The kinematics shown include the beam energy E_b , central angle and momentum settings of the spectrometer θ_0, E'_0 , and the actual kinematics averaged from the data $\langle Q^2 \rangle$ and $\langle x \rangle$. The electron asymmetries obtained from the narrow trigger of the DAQ with beamrelated corrections, $A_{\rm raw}^{\rm bc}$, were corrected for the effects from the beam polarization P_b and other systematic effects including: the beam depolarization effect $\bar{f}_{\rm depol}$, the target aluminum endcap $\bar{f}_{\rm Al}$, the DAQ deadtime $\bar{f}_{\rm dt}$ [1], the radiative correction $\bar{f}_{\rm rc}$ that includes effects from energy losses of incoming and scattered electrons as well as the spectrometer acceptance and detector efficiencies, and the box-diagram correction $\bar{f}_{\gamma\gamma \rm box}$. Other systematic uncertainties that affected the asymmetries include: the charged pion and the pair production background \bar{f}_{π^-} and $\bar{f}_{\rm pair}$, the beam normal asymmetry \bar{f}_{An} , the uncertainty in the determination of Q^2 , the re-scattering background, and the target impurity. Final results on the physics asymmetries $A_{\rm exp}$ are shown with their statistical, systematic, and total uncertainties. Reference: [1] Subedi, R. *et al.*, A Scaler-Based Data Acquisition System for Measuring Parity Violation Asymmetry in Deep Inelastic Scattering, Nucl. Instrum. Meth. A. **724**, 90 (2013).

	$\langle Q^2 \rangle = 1.085, \ \langle x \rangle = 0.241$	$\langle Q^2 \rangle = 1.901, \ \langle x \rangle = 0.295$		
Physical couplings used in the Calculation				
$\alpha_{EM}(Q^2)$	1/134.45	1/134.20		
$C_{1u}^{\rm SM} = -0.1887 - 0.0011 \times \frac{2}{3} \ln(\langle Q^2 \rangle / 0.14 \text{GeV}^2)$	-0.1902	-0.1906		
$C_{1d}^{\rm SM} = 0.3419 - 0.0011 \times \frac{-1}{3} \ln(\langle Q^2 \rangle / 0.14 {\rm GeV}^2)$	0.3427	0.3429		
$2C_{1u}^{\rm SM} - C_{1d}^{\rm SM}$	-0.7231	-0.7241		
$C_{2u}^{\rm SM} = -0.0351 - 0.0009 \ln(\langle Q^2 \rangle / 0.078 \ {\rm GeV}^2)$	-0.0375	-0.0380		
$C_{2d}^{\rm SM} = 0.0248 + 0.0007 \ln(\langle Q^2 \rangle / 0.021 \ {\rm GeV}^2)$	0.0276	0.0280		
$2C_{2u}^{\rm SM} - C_{2d}^{\rm SM}$	-0.1025	-0.1039		
a_1, a_3 terms in $A_{\rm SM}$, in ppm				
CTEQ/JLab (CJ) full fit, mid	NA	-147.37, -12.12		
min		-147.41, -12.99		
max		-147.40, -13.07		
"PDF+QPM" MSTW2008 LO	-83.61, -4.13	-146.43, -12.48		
"PDF+QPM" CT10 (NLO)	-84.06, -4.35	-146.64, -12.89		
coefficients for $2C_{1u} - C_{1d}$, $2C_{2u} - C_{2d}$ in $A_{\rm SM}$, in ppm				
CTEQ/JLab (CJ) full fit, mid	NA	203.52, 116.68		
min		203.58, 125.01		
max		203.56, 125.78		
"PDF+QPM" MSTW2008 LO	115.63, 40.26	202.22, 120.08		
"PDF+QPM" CT10 (NLO)	116.25, 42.41	202.51, 124.08		

TABLE II: Comparison of standard-model (SM) prediction for the asymmetry, $A_{\rm SM}$, using different structure functions: MSTW2008 [2], CT10 [3], and the CTEQ/JLab (CJ) [4] fits. The CJ fits include 3 sets – middle, minimal, and maximal – to provide the nominal value of the asymmetry and the uncertainties. Values for $\alpha_{EM}(Q^2)$ were calculated using $\alpha_{EM}(Q^2 = 0) = 1/137.036$. The weak couplings at the measured Q^2 values, $C_{1,2}^{\rm SM}(Q^2)$, were based on Table 7 and Eq. (114-115) of [5]. References: [2] Martin, A.D., Stirling, W.J., Thorne, R.S. and Watt, G., Parton distributions for the LHC, Eur. Phys. J. C **63**, 189 (2009). [3] H.-L. Lai *et al.*, New parton distributions for collider physics, Phys. Rev. D **82**, 074024 (2010). [4] Owens, J.F., Accardi, A. and Melnitchouk, W., Global parton distributions with nuclear and finite- Q^2 corrections, Phys. Rev. D **87**, 094012 (2013). [5] Erler, J. and Su, S., The Weak Neutral Current, Prog. Part. Nucl. Phys. **71**, 119 (2013).