Spin observables in Deep Processes with CLAS12 at Jefferson Lab

Gregory Matousek September 25th 2023

Jefferson National Lab

- US Department of Energy funded research facility in Virginia
- Home to CEBAF (polarized electron accelerator) and 4 fixed target experimental halls

Continuous Electron Beam Accelerator Facility (CEBAF)

Provides longitudinally polarized (\sim 85%), high luminosity (up to 120 μ A) electron beams at 10.6 – 12 GeV to four experimental halls

Injector: Circularly Pol. Light → GaAs photocathode → Polarized e⁻

Transport: Spreaders/recombiners, arrays of arc dipoles

Acceleration: Liquid helium cooled, superconducting RF linacs (1400 meters)

Arc Dipoles

Superconducting RF Linac (1.09 GeV per straight-away)

CEBAF Large Acceptance Spectrometer (CLAS12)

- Wide coverage detector system capable of ranging particle ID (e, p, n, γ, π, K)
 - Near full coverage in azimuthal ϕ , \sim 5° 140° in lab scattering θ
- Fixed-target experiment (RG-C is the first polarized target experiment at Hall-B in the 12 GeV era)
- ~10.5 GeV, ~85% longitudinally polarized electron beam at ~4-8nA beam current

CLAS12 Detector System

Run Group C @ CLAS12

- Polarized fixed target experiment (June 2022 March 2023)
 - Dynamically polarized NH₃ (proton) and ND₃ (deuteron) targets
 - Calibration targets C, CH₂ and CD₂
- Physics Goals

DIS inclusive and flavor-tagged spin structure functions

Semi-inclusive DIS (SIDIS) to access **Transverse Momentum Distributions** (TMDs), dihadron production and backward baryon production

Deeply Virtual Compton Scattering (DVCS) & Timelike Compton Scattering (TCS) to access **Generalized Parton Distributions** (GPDs) - Measure target single and beam/target double spin asymmetries in proton and neutron DVCS.

List of RG-C Experiments

Experiment Title	Key Observables	Preliminary
Longitudinal Spin Structure of the Nucleon	Polarized parton distributions, gluon helicity, higher twist	
DVCS on the neutron with polarized deuterium target	Neutron Compton Form Factors	
DVCS on longitudinally polarized proton target	Helicity dependent cross sections, upgrade precision and coverage of previous CLAS DVCS measurements	✓
Study of partonic distributions using SIDIS K production	Hadron multiplicities, flavor decomposition of nucleon spin dependent quark PDFs	
Spin-Orbit Correlations with longitudinally polarized target	Transverse momentum dependence of valence quark T/L spin distributions, pion SIDIS	✓
Spin-Orbit correlations in K production with polarized targets	Strange sea p _T distributions, kaon SIDIS (complement above)	
Studies of Dihadron Electroproduction in DIS with Longitudinally Polarized Hydrogen and Deuterium Targets	Spin-orbit correlations in hadronization, dihadron fragmentation functions, fracture functions, twist-3 PDFs	
Studies of Single Baryon Production in the Target Fragmentation Region with a Longitudinally Polarized Target	Fracture functions, separation of current/target hadronization	✓

RG-C Experimental Configuration

- Standard CLAS12 forward detectors (5° $< \theta < 35$ °)
 - ❖ NEW 2nd azimuthal sector RICH detector installed
- Two beam current configurations
 - $(\sim 4-4.5 \, months)$ 4nA: Forward tagger installed $(2^{\circ} < \theta < 5^{\circ})$ widen kinematic coverage
 - (~3 months) 8nA: Forward tagger removed, additional e^-e^- scattering Moller shield installed

Minimizes local depolarization of target

(Left) Back view of two installed CLAS12 RICH sectors

(Bottom) Schematic of the CLAS12 forward tagger

RG-C's Polarized Target

Provides longitudinally polarized p and d

Design Features

- 1K Trolley with swappable 5cm long target cartridges (videos in Pushpa's Tues. talk!)
- 5T solenoid magnet + 140GHz μwave waveguide cavity
- Nested NMR system for live target polarization readings

Cryogenics

- Cryostat: 4.2m long horizontal 1K evaporation refrigerator
- Liquid helium supplied from JLab's End Station Refrigerator (ESR)

RG-C's Polarized Target

Solid target cells kept in 80K liquid Argon bath (Ammonia freezes at 195.5K

- Crushed pellet-sized beads
- Perforated cell walls

Heat removal

Ammonia beads sent by collaborators at University of Virginia (UVa)

Online Monitoring

Live updating raster monitoring

Scattered e⁻ trigger asymmetries

Accumulated beam charge asymmetries

NMR Target Polarization monitoring

NMR software measuring d polarization

Offline Monitoring

Challenge: NMR unable to measure full target volume's polarization

Solution: Monitor polarization with predicted asymmetries in DIS & Elastic scattering

- Determination of dilution factors
- Corrections for beam charge asymmetries

(Top) Deep inelastic scattering asymmetries from NH₃ (Gregory Matousek)

(Left) Elastic scattering asymmetries from NH₃ (Noémie Pilleux)

Calibration Efforts

Target Raster Calibration (Derek Holmberg)

- Analyze extrapolated track vertices and raster $ADC_{x,y}$
- Look at multiple track species (e, π) and detector subsystems (forward, central)
- ** Determine event-by-event beam position in xy-plane for future analyses to utilize **

Track vertex given ADC signal strength

Status of Data Processing

Total Accumulated Beam Charges

NH3: ~13.06 mC
 ND3: ~14.19 mC
 CH2: ~2.88 mC
 CD2: ~0.42 mC

• C: ~3.43 mC •Empty: ~1.85mC

~5% of collected data has been processed for analysis

Preliminary analyses featured correspond to a *fraction* of the total RG-C NH3 data

~70% target polarization ~83% beam polarization

<u>Timeline for *Forward Tagger On* 2023</u>

- Spikes --> Individual runs
- Colors --> Target species
 - Shades --> Target spin
- Diagonal lines --> Total beam charge

Preliminary Analysis: Pion SIDIS

- Measuring **double-spin asymmetry** (F_{LL})
- P_T -dependence \rightarrow Access the k_T -dependence of the helicity distributions $g_1(x,k_T)$

$$d\sigma \propto F_{UU,T} + \epsilon F_{UU,L} + \lambda_e \sqrt{2\epsilon(1-\epsilon)} \sin \phi_h F_{LU}^{\sin \phi_h} + S_{||} \left[\sqrt{2\epsilon(1+\epsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \epsilon \sin(2\phi_h) F_{UL}^{\sin(2\phi_h)} \right] + S_{||} \lambda_e \sqrt{1-\epsilon^2} F_{LL}$$

Proton helicity

Electron helicity

$$F_{LL} \propto g_1(x, k_T) \otimes D_1(z, p_T)$$

Convolution over transverse momentum space

Preliminary Analysis: Pion SIDIS

$$A_{LL} = \frac{N^{+} - N^{-}}{N^{+} + N^{-}} \to \left(\frac{1}{f \times P_{b} \times P_{t} \times D(y)}\right) \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

Beam/target polarization Depolarization factor

- Bin-by-bin determination of dilution factors
 - Analyze NH₃ vs. C yields
 - Calculate %-age of proton cross section

contribution to NH_3

$$f = 1 - \frac{N_C}{N_{NH_3}}$$

Preliminary Analysis: Fracture Functions

0.03 RG-A CR

H₂
0.01 TFR

CFR

-0.01
-0.02
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 xF

 $xF \rightarrow Hadron p_L relative to \gamma^* p_L$ Timothy Hayward

"What physics can we learn from the target remnant (TFR)?"

- Fracture Functions \rightarrow probability for the target (p/n) remnant to form a hadron *given* ejected quark q_f
 - No hard/soft energy scale separation

$$\frac{\mathrm{d}\sigma^{\mathrm{TFR}}}{\mathrm{d}x_{B}\,\mathrm{d}y\,\mathrm{d}z} = \sum_{a} e_{a}^{2} \left(1 - x_{B}\right) M_{a}(x_{B}, (1 - x_{B})z) \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}y}$$

• Direct relationship to traditional PDFs by integrating over fractional longitudinal nucleon momentum ζ

$$\sum_{h} \int_{0}^{1-x} d\zeta \, \zeta \, \hat{\boldsymbol{u}}_{1}(\boldsymbol{x},\boldsymbol{\zeta}) = (1-x)\boldsymbol{f}_{1}(\boldsymbol{x})$$
$$\sum_{h} \int_{0}^{1-x} d\zeta \, \zeta \, \hat{\boldsymbol{l}}_{1L}(\boldsymbol{x},\boldsymbol{\zeta}) = (1-x)\boldsymbol{g}_{1L}(\boldsymbol{x})$$

- Key for understanding how to separate current vs. target fragmentation
- RG-C is a great laboratory for testing TFR phenomena
 - No Collins mechanism in TFR $\rightarrow F_{UL}^{\sin 2\phi} \approx 0$ and simpler structure functions
 - Test nuclear medium modification in NH_3 's F_{LU} vs. H_2 's F_{LU} (RG-A)
 - Access familiar TMD/PDFs with different systematics

Preliminary Analysis: Fracture Functions

No Collins mechanism in TFR $\rightarrow F_{III}^{\sin 2\phi} \approx 0$

Minimal nuclear medium modification

TFR Access to helicity distribution g_{1L}

$$A_{LL} = \lambda_{\ell} S_L \frac{\sqrt{1 - \epsilon^2 F_{LL}}}{F_{UU,T}}$$

Preliminary Analysis: pDVCS on NH₃

$$\mathcal{F}_p(\xi, t) = \frac{4}{9} \mathcal{F}_u(\xi, t) + \frac{1}{9} \mathcal{F}_d(\xi, t)$$

$$\mathcal{F}_n(\xi, t) = \frac{4}{9} \mathcal{F}_d(\xi, t) + \frac{1}{9} \mathcal{F}_u(\xi, t)$$

🜟 Flavor Decomposition 🜟

- GPDs give a 3-d partonic picture in terms of longitudinal momentum, transverse spatial position, and their correlations
- **pDVCS** (NH_3) measurements at RG-C give access to A_{LU} , A_{UL} , A_{LL}
- With **nDVCS** $(ND_3) \rightarrow$ Separation of u, d Compton Form Factors

$$\begin{array}{ll} \boxed{\mathbf{e}^{-}} & \mathsf{p/n} & \Delta\sigma_{LU} \simeq \sin(\phi) \Im \left[F_1 \mathcal{H} + \xi (F1+F2) \tilde{\mathcal{H}} - \xi \frac{t}{4M^2} F_2 \mathcal{E} \right] \\ \boxed{\mathbf{e}^{-}} & \mathsf{p/n} & \Delta\sigma_{UL} \simeq \sin(\phi) \Im \left[F_1 \tilde{\mathcal{H}} + \xi (F_1+F_2) (\mathcal{H} + \frac{x_{bj}}{2} \mathcal{E}) - \xi (\frac{x_{bj}}{2} F_1 + \frac{t}{4M^2} F_2) \tilde{\mathcal{E}} \right] \\ \boxed{\mathbf{e}^{-}} & \mathsf{p/n} & \Delta\sigma_{LL} \simeq (A + B \cos(\phi)) \Re [F_1 \tilde{\mathcal{H}} + \xi (F_1+F_2) (\mathcal{H} + \frac{x_{bj}}{2} \mathcal{E}) - \xi (\frac{x_{bj}}{2} F_1 + \frac{t}{4M^2} F_2) \tilde{\mathcal{E}}] \end{array}$$

Preliminary Analysis: pDVCS on NH₃

Run Group C Summary

RG-C is the *first longitudinally polarized target experiment* using the CLAS12 detector system in JLab's 12 GeV era

- Broad physics program: Structure functions, TMDs, GPDs
- Polarized p and n --> quark flavor sensitivity
- Large acceptance to explore a wider kinematic phase space
- Unprecedented polarized target & beam statistics capable of performing multidimensional binning of observables
- Preliminary 5% of data has been processed (stay tuned!)

Extra Slides

Dynamic Nuclear Polarization

Step 1: Brute Force polarization of free e^- with 5T solenoid field

$$P = \tanh\left(\frac{\mu B}{k_B T}\right)$$

Step 2: Induce electron-nuclei spin exchange with 140 GHz microwaves

 $P_p \approx 95\%$ $P_d \approx 50\%$

➤ Learn more at Pushpa Pandey's talk on Tuesday!