## **Experimental measurements**

MODEL INDEPENDENT MEASUREMENTS

global 
$$\alpha = f * \eta * \epsilon = \frac{n}{N_0}$$
  
efficiency  
where  
 $f$  - light source intensity  
 $\eta$  - quantum efficiency  
No - to

 $\epsilon$  - collection efficiency

n - number of events with signal above pedestal's  $5\sigma$ 

 $N_0$  - total number of triggers

#### MODEL DEPENDENT MEASUREMENTS

Disentangle different efficiencies η and ε using Pavel's model that describes SPE spectum

## **Experimental measurements**



eficiencies. Extractable model independently.

# **MAPMTs** sampling



## Global efficiencies $\alpha$



#### ZA0175: 3.40 CA7717: 3.43 HV=1075 V





## Global efficiencies $\alpha$



## Pavel's SPE fit model

Within model framework SPE fit allows extraction of the:

Gain
Collection efficiency
Average number of photoelectrons μ (related to quantum efficiency)



#### **Gain Extraction**



#### **Gain Extraction**



## Average number of photoelectrons (µ)



# Average number of photoelectrons (µ)



## **Collection Efficiency**

Collection Efficiency characterizes the electron multiplier mechanism.
This efficiency can be calculated numerically within the model framework.

The shape of SPE signal extracted from fit model is shown for different MAPMT at different HV



## **Collection Efficiency**



## **Collection Efficiency**



#### CONCLUSION

#### WITHIN THE MODEL FRAMEWORK:

quantum efficiency is superior for H12700 collection efficiency is superior for H8500

**MODEL INDEPENDENTLY:** 

E

H12700 is SUPERIOR

due to the DECISIVELY HIGHER

**QUANTUM EFFICIENCY**