

Multi-Anode PMTs

A. Kim, V. Kubarovsky

CLAS12 RICH review October 2015

Photon Detector

CLAS12 RICH review, October 2015

Multi-Anode PhotoMultiplier Tube

HAMAMATSU H12700

FEATURES

- Large Effective Area: 48.5mm x 48.5mm
- Packing Density: 87%
- 8x8 Multianode, Pixel size: 6mm x 6mm
- High Quantum Efficiency: 33%

CLAS12 RICH review, October 2015

PHOTOCATHODE FOCUSING MESH METAL CHANNEL **DYNODES** MULTIANODE 100 CATHODE RADIANT SENSITIVITY (mA/W) QUANTUM EFFICIENCY (%) 10 H12700A (/H12700B 1 0.1 CATHODE RADIANT SENSITIVITY - QUANTUM EFFICIENCY 0.01 600 200 300 400 500 700 800 WAVELENGTH (nm)

Experimental Setup Assembly

Setup Schematic

Inside the Black Box

4

UCONN

Jefferson Lab

CLAS12 RICH review, October 2015

Optical System

- Picosecond Diode Laser
- Monochromatic light 470nm
- Short pulse width: 15-50ps
- Pulse frequency: up to 1 MHz
- Beam attenuation: ND filters

 Scan pixel surface: photocathode uniformity test

• Full coverage of MAPMT surface

Experimental technique

- Pedestal Data collected without laser light
- SPE spectum collected using the laser light attenuated by Neutral Density filters attenuation factor≈10⁶

$$n_{eff} = \frac{N_{5\sigma}}{N_0}$$

Experimental observables

Hamamatsu PMT Characteristics

measured and reported by Hamamatsu for each MAPMTS

		(1)	(0)	(2)	(4)	(5)	(0)]
		Cathoda	(2)	(3)	(4)	(5)	(6)
	Seriel	Luminoue	Anode	Anode	Anode	Cathode	
	Serial	Luminous	Luminous	Dark	Dark	Blue	Gain
	Number	Sens.	Sens.	Current	Current	Sens.	
		. /2				Index	
	~	μA/Im	A/Im	nA	nA		x10°
	CA0206	90.5	105 0	0.50			
	GAUZUO	80.5	125.0	0.52	5.93	11.40	1.55
	GAUZUS	18.5	324.0	1.18	3. 34	11.30	4.13
	GAUZZ4	82.3	168.0	0.65	2.54	11.80	2.04
	GAU226	76.2	96. 2	0.56	3. 20	11.50	1.26
5	GA0237	78.4	177.0	0.98	2.82	11. 20	2. 26
	GA0259	82.6	128.0	0.15	0.56	11.70	1.55
	GA0261	87.8	226.0	0.34	1.58	11.80	2.57
	GA0291	101.0	138.0	0.83	7.86	11.90	1.37
	GA0293	92.0	273.0	0.32	1.08	12.00	2.97
10	GA0297	102.0	320.0	2.11	6.65	12.10	3.14
	GA0300	111.0	176.0	1.45	3.41	12.10	1.59
	GA0302	118.0	219.0	1.40	3.55	12.30	1.86
	GA0303	99.3	149.0	0.86	2.29	12.10	1.50
	GA0308	86.7	139.0	0.56	1.11	11.90	1.60
15	GA0310	94. 4	140.0	0.51	0.57	12.80	1.48
	GA0319	99.5	185.0	0.25	0.71	13.20	1.86
	GA0328	92.3	116.0	0.60	5.68	12.30	1.26
	GA0330	107.0	166.0	1.38	4.35	12.20	1.55
	GA0331	94.9	212.0	0.97	4.52	12.50	2. 23
	GA0342	76.4	95.3	0.78	1.82	11.20	1.25
20	GA0345	78.1	125.0	1.58	4.95	10.70	1.60
	GA0355	70.2	136.0	0. 22	0.70	11.10	1.94
	GA0357	72.5	148.0	0.51	1.09	11.00	2.04
	GA0358	83. 7	278.0	0.88	5.75	11,00	3, 32
<u>_</u>	GA0361	69.1	154.0	1.60	3.60	10.80	2. 23

Anode Uniformity

Ratio of Anode Output = $1 : 1.7$							
PL	P2	.P3	P4	P5	P6	P7	P8
67	71	76	72	69	74	69	67
P9	PLO	PLI	PL2	P13	P14	P15	P16
69	66	70	66	61	65	66	71
P17	PIS	P19	P20	P21	P22	123	P24
72	66	66	64	60	62	67	74
P25	P26	P27	P28	P29	P30	P31	P32
75	67	67	67	62	63	69	75
P33	P34	P35	P36	P37	P38	P39	P40
76	65	67	67	64	65	70	75
P41	P42	P43	P44	P45	P46	P47	P48
74	64	65	67	65	67	71	76
P49	P50	P51	P5	P53	P54	P55	P56
70	65	68	72	68	71	72	77
P37	P58	P59	P60	P61	P62	P63	P64
81	89	94	100	94	98	94	83
Top View							

Cathode Luminous Sensitivity

defines photocathode performance

Cathode Blue Luminous Sensitivity

 defines photocathode performance for wavelength shorter than 450 nm

Gain (amplification)

 performance of the multiplication system (collection efficiency, dynode secondary electron emission)

Anode Luminous Sensitivity

defines MAPMT performance of photoelectron emission and multiplication system (convolution of cathode lumious sensitivity and gain) directly related to measured efficiency!

typical uniformity data obtained from each anode probably originates from gain variations in the secondary electron multiplier

UCONN

Experimental measurements

- Measurements performed for 4 HV
- 1 million events are collected

per each pixel

per 4 HV

per 5 different light intensities

measured

1100V

1075V

1050V

1000V

reported by Hamamatsu

Experimental measurements

CLAS12 RICH review, October 2015

SPE Spectrum Analysis

- > approximate the true single-photoelectron spectra
- disentangle the characteristics of photocathode and multiplier system can provide quantum efficiency and collection efficiency within model framework
- parameterized form is well suited for future simulation of detector response

SPE Spectrum Analysis

model by Pavel Degtiarenko

OD - optical density filters used for laser attenuation OD46 = $10^{-4.6}$ attenuation OD54 = $10^{-5.4}$ attenuation

FEATURES

- **Scale** independent of Light dynode Intensity (PMT system characteristic)
- $\succ \mu$ independent of High Voltage (PMT photocathode characteristic)

Jefferson Lab

CLAS12 RICH review, October 2015

Pixel surface uniformity

- Response segmentation depending on dynode mesh structure in horizontal direction
- Uniform response in vertical direction
- Signal strength drops in deadspace are 40-50% relative to the signal maximum values

CLAS12 RICH review, October 2015

Pixel surface uniformity

Illuminate the whole surface of the pixel to obtain average characteristics!

Pixel surface uniformity: Hamamatsu response

- continuity in dynode surface along Y direction
- gaps between dynode in X directions
- uniform photocathode performance

deadspace between pixels

H8500 to H12700 comparison

H8500 is an older model of MAPMT

- H12700 is designed for better detection of single photon
- H12700 has better cathode sensitivity: better quantum efficiency
- H12700 has less dynode stages: 10 vs 12 (H8500) but it has similar gain

Jefferson Lab

H8500 to H12700 comparison

Energy Resolution (H8500 vs H12700) 12.0 H8500 11.5 Effects of improvement for CE and for secondary emission ratio of Dy1 11.0 Energy Resolution (%) H12700 10.5 10.0 Effect of improvement for OE 9.5 9.0 HV = -1,000V H12700 Scintillator: LYSO (4x4x20 mm³) 8.5 Source: Cs137 (662 KeV) Anode: P28 (All the other anodes 8.0 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 Cathode Blue Sensitivity Index

Energy Resolutions of Flat Panel PMTs

Supply Voltage : -1,000 V Scintillator : LYSO (4 x 4 x 20 mm³) Source : Cs-137 (662 keV) Measured anode pixel : P28 (all the other anodes are grounded.)

Tuno	S/N	Sk	Skb	E-Reso
туре	3/1	(uA/lm)		(%)
	ZA0126	61.2	11.7	9.9
	ZA0195	103	13.8	9.4
	ZA0246	90.3	12.3	9.5
H12700	ZA0257	78.4	11.7	9.5
H12/00	ZA0263	85.4	12.9	9.4
	ZA0264	80.2	12.8	9.7
	ZA0269	86.3	13	9.6
	Ave.	83.5	12.6	9.6
	ZA0001	54.8	9.69	10.7
H12700	ZA0002	69.2	10.8	10.8
	Ave.	62.0	10.2	10.8
	CA7105	66.6	11.2	11.7
H8500	CA7109	52.1	9.76	11.8
	Ave.	59.4	10.5	11.8

- H12700 has higher QE photocathode better alkali metal application due the lower number of dynode stages
- H12700 has better secondary emission ratio for first dynode due to the higher supply voltage

H8500 to H12700 comparison

Conclusion

- 80 H8500, 140 H12700 MAPMTs received: no defects were found
- The new H12700 MAPMTs have better performance
- The MAPMTs characterization setup is able to test 10 (12-14 if necessary) MAPMTs per day with high statistics and different configuration of high voltage supply and light intensities
- The model to describe SPE is implemented and found to be well suitable for description of MAPMTs SPE response
- The MAPMTs characterization measurements are in agreement with Hamamatsu specs

We expect to receive remaining MAPMTs till the end of this year and we are ready for them....

