Measurement Of the Proton **Electric to Magnetic Form Factor Ratio,** G_{E}^{P}/G_{M}^{P} with **Polarized Beam and Target** Spin Asymmetries of the Nucleon Experiment (E07-003) Jefferson Lab Anusha Liyanage Jefferson National Accelerator Facility 10th Annual Graduate Research Symposium

March 25, 2011

Outline

- Introduction
- Physics Motivation
- Experiment Setup
 - Detectors
 - Polarized Target
- Elastic Kinematics
- Data Analysis
 - Electrons in HMS
 - Protons in HMS
- Future Work/Conclusion

The four-momentum transfer

 $q^{2} = (k - k')^{2} = k^{2} + k'^{2} - 2kk'$

 $q^{2} = -2kk' = -2(E,k)(E',k')$

For electron, $k^2 = E^2 - k^2 = m_e^2 = 0$

 $q^2 = -2(EE' - k \cdot k')$

 $q^2 = -2EE'(1 - \cos \Theta)$

 $Q^2 = -q^2 = 4EE'\sin^2\left(\frac{\Theta}{2}\right)$

squared,

Introduction

Considering the elastic scattering of electron from the proton target,

- $G_E^P(q^2)$ and $G_M^P(q^2)$
- Elastic,
- Electric and Magnetic Form Factors (Sachs form factors)
- Provide the information on the spatial distribution of electric charge and magnetic moment within the proton
- Are functions of the four-momentum transfer squared, *q*²
 Fourier

At low
$$|q^2|$$

 $G_E(q^2) \approx G_E(\overline{q}^2) = \int e^{i\overline{q}\cdot\overline{r}} \rho(\overline{r}) d^3\overline{r}$
 $G_M(q^2) \approx G_M(\overline{q}^2) = \int e^{i\overline{q}\cdot\overline{r}} \mu(\overline{r}) d^3\overline{r}$

At
$$q^2 = 0$$

 $G_E(0) = \int \rho(\bar{r}) d^3 \bar{r} = 1$
 $G_M(0) = \int \mu(\bar{r}) d^3 \bar{r} = \mu_P = +2.79$

transforms of the charge, $\rho(r)$ and magnetic moment, $\mu(r)$ distributions in Breit Frame

- Dramatic discrepancy between Rosenbluth and recoil polarization technique.
- Multi-photon exchange considered the best candidate for the explanation

• Double-Spin Asymmetry is an Independent Technique to verify the discrepancy

Experiment Setup/ Detectors

• BETA detector package Forward Tracker - tracking Gas Cerenkov – ID Lucite Hodescope – tracking Lead Glass Calorimeter - ID

Elastic (e , e'p) scattering from the polarized NH_3 target using a longitudinally polarized electron beam

(Data collected from Jan – March ,2009)

 $e^{-}p \rightarrow e^{-}p$

• HMS detector Drift Chambers Hodescope Gas Cerenkov Lead Glass Calorimeter

Experiment Setup/Polarized Target

- C , CH_2 and NH_3
- Dynamic Nuclear Polarization (DNP) polarized the protons in the NH₃ target up to 90% at
 - 1 K Temperature 5 T Magnetic Field
- Temperature is maintained by immersing the entire target in the liquid He bath
- Used microwaves to excite spin flip transitions
 - (55 GHz 165 GHz)
- Polarization measured using NMR coils

- Used only perpendicular Magnetic field configuration for the elastic data
- Average target polarization is $\sim 70~\%$
- Average beam polarization is $\sim 73 \%$

Elastic Kinematics

(From HMS Spectrometer)

Spectrometer mode	Coincidence	Coincidence	Single Arm
HMS Detects	Proton	Proton	Electron
E Beam GeV	4.72	5.89	5.89
P GeV/C	3.58	4.17	4.40
Θ _{HMS} (Deg)	22.30	22.00	15.40
Q^2 (GeV/C) ²	5.17	6.26	2.20
Total Hours (h)	~40 (~44 runs)	~155 (~135 runs)	~12 (~15 runs)
e-p Events	~113	~824	-

Data Analysis PART I : Electrons in HMS

 $\vec{e} \cdot \vec{p} \longrightarrow \vec{e} \cdot \vec{p}$

By knowing the incoming beam energy, E and the scattered electron angle, θ

$$Q^2 = 4EE'\sin^2\left(\frac{\theta}{2}\right)$$

$$W^2 = M^2 - Q^2 + 2M(E - E')$$

Extract the electrons

• Used only the Electron selection cuts.

of Cerenkov photoelectrons > 2
shtrk/hse > 0.7

$$Abs\left(\frac{P-P_c}{P_c}\right) < 8$$

- Cerenkov cut
- Calorimeter cut
- HMS Momentum acceptance cut

Here,

- P Measured electron momentum at HMS
- Pc Central momentum of HMS
- shtrk Total measured shower energy of a chosen electron track
- hse Calculated electron energy by knowing the electron momentum ,

$$hse = \sqrt{P^2 + M^2}$$

PART I : Continued.....

The raw asymmetry, A_r

$$\frac{N^{+} - N^{-}}{N^{+} + N^{-}} \Delta A_{r} = \frac{2\sqrt{N^{+}}\sqrt{N^{-}}}{(N^{+} + N^{-})\sqrt{(N^{+} + N^{-})}}$$

$$N^+$$
 / N^- = Charge normalized Counts for the +/-
helicity
 ΔA_r = Error on the raw asymmetry

The Raw Asymmetries

Further analysis requires a study of the dilution factor and backgrounds in order to determine the physics asymmetry and $G^{P}{}_{E}/G^{P}{}_{M}$. (at Q²=2.2 (GeV/C)²)

Study of a Dilution Factor

What is the Dilution Factor ?

The dilution factor is the ratio of the yield from scattering off free protons(protons from H in NH₃) to that from the entire target (protons from N, H and He)

Comparing MC for NH3 target

Dilution Factor,

Yield $_{Data}$ – Yield $_{MC}$ Yield Data

In order to consider NH_3 target, Used N, H and He separately

Determination of the Dilution Factor

PART II: Protons in HMS

Extracting the elastic events

Definitions :

• X / Yclust - Measured X / Y positions on BigCal X = horizontal / in-plane coordinateY = vertical / out - of - planecoordinate

By knowing

beam, E_B

and

the energy of the polarized electron We can predict the • X/Y coordinates , X_HMS, Y_HMS the scattered proton angle, Θ_{P} on the BigCal (Target Magnetic Field Corrected)

Momentum difference

From The Experiment

Error Propagation From The Experiment....

Positive Po	larization				
H + Counts	H- Counts	A _{raw}	Error A _{raw}	A _{phy}	Error A _{phy}
259	263	-0.009	0.044	-0.029	0.085
Negative Polarization					
Tot H +	Tot H -	A _{raw}	Error A _{raw}	A _{phy}	Error A _{phy}
223	226	-0.008	0.039	-0.026	0.099

Weighted Averaged (very preliminary)

$\mathbf{A}_{\mathbf{phy}}$	Error A _{phy}		
-0.028	0.064		

Used the

Average Beam Polarization = 73 %Average Target Polarization = 70 %

$$A_P = \frac{-b\sin\theta^*\cos\phi^*r}{c} - \frac{a\cos\theta^*}{c}$$

$$\Delta A_{P} = \left| \frac{b \sin \theta^{*} \cos \phi^{*}}{c} \right| \Delta r$$

Using the experiment data at $Q^2=6.26 (GeV/C)^2$, with total ep events ~970, $\Delta A_p=0.064$ $\Delta r = 0.127$ $\mu \Delta r = 2.79 \times 0.127$ $\mu \Delta r = 0.35$ Where , μ – Magnetic Moment of the

Proton

Future Work ..

- Extract the physics asymmetry and the G_{E}^{p}/G_{M}^{p} ratio
- Improve the MC/SIMC simulation and

estimate the background

Conclusion ..

- Measurement of the beam-target asymmetry in elastic electron-proton scattering offers an independent technique of determining G_E/G_M ratio.
- This is an 'explorative' measurement, as a by-product of the SANE experiment.

SANE Collaborators:

Argonne National Laboratory, Christopher Newport U., Florida International U., Hampton U., Thomas Jefferson National Accelerator Facility, Mississippi State U., North Carolina A&M, Norfolk S. U., Ohio U., Institute for High Energy Physics, U. of Regina, Rensselaer Polytechnic I., Rutgers U., Seoul National U., State University at New Orleans, Temple U., Tohoku U., U. of New Hampshire, U. of Virginia, College of William and Mary, Xavier University, Yerevan Physics Inst.

rson

fferson National Accelerator Facility

Spokespersons: S. Choi (Seoul), M. Jones (TJNAF), Z-E. Meziani (Temple), O. A. Rondon (UVA)

11

