# Proton Form Factor Ratio, $\mu_{p}G^{P}_{E}/G^{P}_{M}$ From Double Spin Asymmetry

Spin Asymmetries of the Nucleon Experiment (E07-003)





Anusha Liyanage May 16<sup>th</sup>, 2016

# Outline

- Goal of the Experiment
- Physics Motivation
- Experiment Setup
  - BETA Detector
  - HMS Detector
  - Polarized Target
- Data Analysis
  - Elastic Kinematics
  - Elastic Event Selection
  - Physics asymmetries
  - Results

#### Conclusion

# Goal of the SANE

- SANE is a single arm inclusive scattering experiment. Used
  - Big Electron Telescope Array BETA In single arm mode
  - High Momentum Spectrometer HMS in both single arm and coincidence mode

## Physics from BETA:

• Measure proton spin structure function  $g_2(X,Q^2)$  and spin asymmetry  $A_1(X,Q^2)$ at four-momentum transfer  $2.5 < Q^2 < 6.5 \text{ GeV}^2$  and 0.3 < X < 0.8



by measuring anti-parallel and near-perpendicular spin asymmetries.
Study twist -3 effects (d2 matrix element) and moments of g<sub>2</sub> and g<sub>1</sub>
Comparison with Latice QCD, QCD sum rule
Explore "High" X<sub>B</sub> region: A<sub>1</sub> at X<sub>B</sub>~1

#### Physics from HMS :

HMS detected electrons with momenta from 1 to around 5 GeV/c



#### 1. Packing fraction determination.

 Used the ratio of data/MC yields for C target to determine the packing fraction.

#### 2. Asymmetry measurements.

- Inclusive Asymmetries:  $Q^2$  of 0.8, 1.3 and 1.8  $(GeV/c)^2$
- Elastic Asymmetries:

Measured the elastic asymmetries at magnetic field of 80<sup>0</sup> and hence the ratio of form factors,  $\mu_{p}G_{E}^{p}/G_{M}^{p}$ 

- From single arm data at  $Q^2 = 2.06 (GeV/c)^2$
- From coincidence data at  $Q^2 = 5.66 (GeV/c)^2$

# **Physics Motivation**

#### Elastic scattering in one-photon exchange (BORN) approximation



 $F_1$  – non-spin flip (Dirac Form Factor) describe the charge distribution  $F_2$  – spin flip (Pauli form factor) describe the magnetic moment distribution

Sachs Form Factors 
$$G_E(q^2) = F_1(q^2) - \tau F_2(q^2); G_M(q^2) = F_1(q^2) + F_2(q^2)$$
  
 $\tau = \frac{Q^2}{4M^2} = \frac{-q^2}{4M^2}$ 

# Form Factor Ratio at High Q<sup>2</sup>



- Dramatic discrepancy between Rosenbluth and recoil polarization technique.
- Not only the slope of  $G_{E}^{p}$  at low  $Q^{2}$  and hence the charge radius still uncertain, but also  $G_{E}^{p}/G_{M}^{p}$  is uncertain at high  $Q^{2}$ .
- Multi-photon exchange considered the best candidate for the dramatic discrepancy between Rosenbluth and recoil polarization technique.



# Form Factor Ratio Measurements

## 1. Rosenbluth Seperation Method.

- Measure the electron unpolarized proton elastic scattering cross section at fixed Q<sup>2</sup> by varying the scattering angle,  $\theta_{e.}$
- Strongly sensitive to the radiative corrections.



## 2. Polarization Transfer Technique.

- Measure the recoil proton polarization from the elastic scattering of polarized electron-unpolarized proton.
- Insensitive to absolute polarization, analyzing power.
- Less sensitive to radiative correction.



## 3. Double-Spin Asymmetry.

- Measure the cross section asymmetry between + and electron helicity states in elastic scattering of a polarized electron on a polarized proton.
- The systematic errors are different when compared to either the Rosenbluth technique or the polarization transfer technique.
- The sensitivity to the form factor ratio is the same as the Polarization Transfer Technique.

$$A_{p} = \frac{-br\sin\theta^{*}\cos\phi^{*} - a\cos\theta^{*}}{r^{2} + c}$$

$$\frac{G_{E}}{G_{M}} = -\frac{b}{2A_{p}}\sin\theta^{*}\cos\phi^{*} + \sqrt{\frac{b^{2}}{4A_{p}^{2}}}\sin^{2}\theta^{*}\cos^{2}\phi^{*} - \frac{a}{A_{p}}\cos\theta^{*} - c$$

$$\frac{g_{E}}{G_{M}} = -\frac{b}{2A_{p}}\sin\theta^{*}\cos\phi^{*} + \sqrt{\frac{b^{2}}{4A_{p}^{2}}}\sin^{2}\theta^{*}\cos^{2}\phi^{*} - \frac{a}{A_{p}}\cos\theta^{*} - c$$

$$\frac{g_{E}}{G_{M}} = -\frac{b}{2A_{p}}\sin\theta^{*}\cos\phi^{*} + \sqrt{\frac{b^{2}}{4A_{p}^{2}}}\sin^{2}\theta^{*}\cos^{2}\phi^{*} - \frac{a}{A_{p}}\cos\theta^{*} - c$$

$$\frac{g_{E}}{G_{M}} = -\frac{b}{2A_{p}}\sin\theta^{*}\cos\phi^{*} + \sqrt{\frac{b^{2}}{4A_{p}^{2}}}\sin^{2}\theta^{*}\cos^{2}\phi^{*} - \frac{a}{A_{p}}\cos\theta^{*} - c$$

$$\frac{g_{E}}{G_{M}} = -\frac{b}{2A_{p}}\sin\theta^{*}\cos\phi^{*} + \sqrt{\frac{b^{2}}{4A_{p}^{2}}}\sin^{2}\theta^{*}\cos^{2}\phi^{*} - \frac{a}{A_{p}}\cos\theta^{*} - c$$

$$\frac{g_{E}}{\Phi_{p}} = -\frac{b}{2A_{p}}\sin\theta^{*}\cos\phi^{*} + \sqrt{\frac{b^{2}}{4A_{p}^{2}}}\sin^{2}\theta^{*}\cos^{2}\phi^{*} - \frac{a}{A_{p}}\cos\theta^{*} - c$$

$$\frac{g_{E}}{\Phi_{p}} = -\frac{b}{2A_{p}}\sin^{2}\theta^{*}\cos\phi^{*} + \sqrt{\frac{b^{2}}{4A_{p}^{2}}}\sin^{2}\theta^{*}\cos^{2}\phi^{*} - \frac{a}{A_{p}}\cos\theta^{*} - c$$

$$\frac{g_{E}}{\Phi_{p}} = -\frac{b}{2A_{p}}\sin^{2}\theta^{*}\cos\phi^{*} + \sqrt{\frac{b^{2}}{4A_{p}^{2}}}\sin^{2}\theta^{*}\cos^{2}\phi^{*} - \frac{a}{A_{p}}\cos\theta^{*} - c$$

$$\frac{g_{E}}{\Phi_{p}} = -\frac{b}{2A_{p}}\sin^{2}\theta^{*}\cos\phi^{*} + \sqrt{\frac{b^{2}}{4A_{p}^{2}}}\sin^{2}\theta^{*}\cos^{2}\phi^{*} - \frac{a}{A_{p}}\cos\theta^{*} - c$$

$$\frac{g_{E}}{\Phi_{p}} = -\frac{b}{2A_{p}}\sin^{2}\theta^{*}\cos\phi^{*} + \sqrt{\frac{b^{2}}{4A_{p}^{2}}}\sin^{2}\theta^{*}\cos^{2}\phi^{*} - \frac{a}{A_{p}}\cos\theta^{*} - c$$

$$\frac{g_{E}}{\Phi_{p}} = -\frac{b}{2A_{p}}\sin^{2}\theta^{*}\cos^{2}\phi^{*} - \frac{a}{A_{p}}\cos^{2}\phi^{*} - \frac{a}{A_{p}}\cos^{2}\phi^{*$$



 Double-Spin Asymmetry is an independent technique to verify the discrepancy.

# **Experiment Setup**





- BETA for coincidence electron detection
- Central scattering angle: 40°
- Over 200 msr solid angle coverage



- HMS for the scattered proton detection
- Central angles are 22.3° and 22.0°
- Solid angle ~10 msr

Hall C at Jefferson Lab

Elastic (e, e'p) scattering from the polarized NH<sub>3</sub> target using a longitudinally polarized electron beam

(Data collected from Jan – March, 2009)

## <u>Big Electron Telescope Array – BETA</u>

#### Forward Tracker

• 3 planes of Bicron Scintillator provide early particle tracking



#### Cerenkov

- N<sub>2</sub> gas cerenkov
- Provides particle ID
- 8 mirrors and 8 PMTs

#### Lucite Hodescope

- 28 bars of 6cm wide Lucite
- Bars oriented horizontally for Y tracking
- PMTs on either side of bar provides X resolution



## High Momentum Spectrometer – HMS

#### Drift Chambers

• Each plane has a set of alternating field and sense wires Filled with an equal parts Argon-Methane mixture





- Track particle trajectory by multiple planes.
- $\chi^2$  fitting to determine a straight trajectory.

#### Hodescopes

- Each plane contains 10 to 16 Scintillator paddles with PMTs on both ends
- Each Paddle is 1.0 cm thick and 8.0 cm wide



- Fast position determination & triggering
- Time of Flight (TOF) = T2-T1 determines  $\beta$ ( $\beta = L/c \times TOF$ )



#### Gas Cerenkov

- Two mirrors (top & bottom) connected to two PMTs
- Used as a Particle ID

#### <u>Lead Glass Calorimeter</u>

- 4 layers of 10 cm x 10cm x70cm blocks stacked 13 high.
- Used as a Particle ID

## Polarized Target Magnetic Field

- Used Dynamic Nuclear Polarization (DNP) to polarized NH<sub>3</sub> target.
- Used only perpendicular magnetic field configuration for the elastic data



• Average target polarization is  $\sim 70~\%$ 

• Average beam polarization is  $\sim$  73 %

## Elastic Kinematics (From HMS Spectrometer)

| Spectrometer<br>mode          | Coincidence       | Coincidence         | Single Arm           |
|-------------------------------|-------------------|---------------------|----------------------|
| HMS Detects                   | Proton            | Proton              | Electron             |
| E Beam<br>GeV                 | 4.72              | 5.89                | 5.89                 |
| P <sub>HMS</sub><br>GeV/c     | 3.58              | 4.17                | 4.40                 |
| Θ <sub>HMS</sub><br>(Deg)     | 22.30             | 22.00               | 15.40                |
| $Q^2$<br>(GeV/c) <sup>2</sup> | 5.14              | 6.19                | 2.06                 |
| Total Hours<br>(h)            | ~40<br>(~44 runs) | ~155<br>(~135 runs) | ~12<br>(~15 runs)    |
| Elastic Events                | ~113              | ~1200               | $\sim 2 \times 10^4$ |

# Single-arm Data (Electrons in HMS)



By knowing, the incoming beam energy, E, scattered electron energy, E'and the scattered electron angle,  $\theta$ 

$$Q^2 = 4EE'\sin^2\left(\frac{\theta}{2}\right)$$

 $\vec{e} \vec{p} \rightarrow e^{-} p$ 

$$W^{2} = M^{2} - Q^{2} + 2M(E - E')$$

#### **Elastic Event Selection**



#### Extracted the Asymmetries

The raw asymmetry, A<sub>r</sub>

$$A_r = \frac{N^+ - N^-}{N^+ + N^-} \qquad \Delta A_r = \frac{2\sqrt{N^+}\sqrt{N^-}}{(N^+ + N^-)\sqrt{(N^+ + N^-)}}$$

 $N^+$  /  $N^-$  = Charge and live time normalized counts for the +/- helicities  $\Delta A_r$  = Error on the raw asymmetry

Need dilution factor, *f* in order to determine the physics asymmetry, and  $G_{E}^{p}/G_{M}^{p}$  (at Q<sup>2</sup>=2.2 (GeV/c)<sup>2</sup>)

$$A_p = \frac{A_r}{fP_BP_T} + N_C$$

- f = The dilution factor : The ratio of the yield from scattering off free protons (protons from H in NH3) to that from the entire target (protons from N, H, He and Al)
- $P_B P_T$  = Beam and target polarization
- $N_{\rm c} = A$  correction term to eliminate the contribution from quasi-elastic scattering on polarized  $^{14}N$  under the elastic peak (negligible in SANE)

Use MC/DATA comparison for  $NH_3$  target to extract the dilution factor....

#### The Physics Asymmetry



- The weighted average Ap of top and bottom targets were taken.
- The expected physics asymmetries from the known form factor ratio for each  $Q^2$ by Kellys form factor parameterization (J. J. Kelly, Phys. Rev. C70(6), 2004) are shown by dashed lines separately for the two  $\delta$  regions.

The constant physics asymmetry, Ap were read separately,

For each target type and For two different  $\delta$  regions.



### Elastic Kinematics (From HMS Spectrometer)

| Spectrometer<br>mode          | Coincidence       | Coincidence         | Single Arm           |
|-------------------------------|-------------------|---------------------|----------------------|
| HMS Detects                   | Proton            | Proton              | Electron             |
| E Beam<br>GeV                 | 4.72              | 5.89                | 5.89                 |
| P <sub>HMS</sub><br>GeV/c     | 3.58              | 4.17                | 4.40                 |
| Θ <sub>HMS</sub><br>(Deg)     | 22.30             | 22.00               | 15.40                |
| $Q^2$<br>(GeV/c) <sup>2</sup> | 5.14              | 6.19                | 2.06                 |
| Total Hours<br>(h)            | ~40<br>(~44 runs) | ~155<br>(~135 runs) | ~12<br>(~15 runs)    |
| e-p Events                    | ~113              | ~1200               | $\sim 2 \times 10^4$ |

# Coincidence Data (Electrons in BETA and Protons in HMS)

#### Definitions :

 X/Yclust - Measured X/Y positions on BigCal
 X = horizontal / in-plane coordinate
 Y = vertical / out - of - plane coordinate

By knowing the energy of the polarized electron beam, E<sub>B</sub> and the scattered proton angle, **O**<sub>P</sub>

> We can predict the • X/Y coordinates , X\_HMS, Y\_HMS on the BigCal (Target Magnetic Field Corrected)



#### **Elastic Event Selection**



### The Physics Asymmetry

- The weighted average Ap and their errors for the two beam energies,
   5.895 GeV and 4.730 GeV are also shown.
- The expected physics asymmetries from the known form factor ratio for each Q<sup>2</sup> by Kelly's form factor parameterization (J. J. Kelly, Phys. Rev. C70(6), 2004) for the two beam energies are shown by dashed lines.



| The resulting                  | ng form factor ratio is obtaine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ed by,                         |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extrapol                       | lating both measurements to a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | verage Q <sup>2</sup>          | <sup>2</sup> using Kelly's para                                                                                                | meterization and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Taking tl                      | he weighted average.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.8                            | <ul> <li>Qattan (Jlab 2005)</li> <li>Christy (Jlab 2004)</li> <li>Andivahis (SLAC 1994)</li> <li>Walker (SLAC 1994)</li> </ul> | <ul> <li>★ Paolone (Jlab 2010)</li> <li>▼ Ron (Jlab 2007)</li> <li>■ Crawford (Bates 2007)</li> <li>■ Hu (Jlab 2006)</li> <li>■ Jones (Jlab 2006)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $Q_{Avg}^2 \ (\text{GeV/c})^2$ | $\mu_p G_E^p / G_M^p \pm \Delta \mu_p G_E^p / G_{M(stat)}^p \pm \Delta \mu_p G_E^p / G_E^$ | $\frac{p}{M(syst)}$ <b>1.6</b> | <ul> <li>Borkowski (Mainz 1975)</li> <li>Bortol (DESX 1072)</li> </ul>                                                         | <ul> <li>MacLachlan (Jlab 2006)</li> <li>Puniabi (Jlab 2000/2005)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.06                           | $0.720 \pm 0.176 \pm 0.033$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | <ul> <li>◊ Barter (DEST 1973)</li> <li>∧ Berger (Bonn 1971)</li> </ul>                                                         | ▼ Strauch (Jlab 2003) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.00                           | 0.244 ± 0.555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                             | <ul> <li>Litt (SLAC 1970)</li> </ul>                                                                                           | <ul> <li>Gayou (Jiab 2002)</li> <li>Dieterich (Mainz 2001)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | * Bartel (DESY 1967)                                                                                                           | <ul> <li>Pospischil (Mainz 2001)</li> <li>Govou (Jlab 2001)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +                              | × Janssens (SLAC 1966)<br><sub>∓</sub> ⊥     ★   <del>T</del>                                                                  | Milbrath (Bates 1993)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The total                      | relative systematic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ດ_≦1.2 –<br>(ງ                 |                                                                                                                                | ★ Zhan (Jlab 2011)<br>→ Meziane (Jlab 2011) |
| uncertain                      | nty on $\mu_{\rm p} {\rm GP}_{\rm E} / {\rm GP}_{\rm M}$ has been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                                                                                                                                | ★ Puckett (Jlab 2010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| estimated                      | l as 5.44%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | сш 1                           | ╨╬╎ <sub>┥┙</sub> ╝┯╷┝╺┝┯╍╵┆╪╴╴╴╴┥┥╴╴<br>╨Ŷ╵┝┰╖║╵╻┝╇                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ⊐_ <sub>0.8</sub>              |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Because                        | e of the higher error bar on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                              |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| the coin                       | ncidence data point at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6                            |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $O^2 = 5.6$                    | $(GeV/c)^2$ , the systematic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                            |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| uncerta                        | inty studies were not done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ę                              |                                                                                                                                | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                | inty studies were not done.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4                            |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| г (1 1                         | $(1 - 0^2 - 0 + 4) + (1 + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| For the n                      | igner Q <sup>-</sup> , Only the statistical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2 -                          | — - Kelly 2004                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| error is s                     | hown in the plot.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <br>-                          |                                                                                                                                | * ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ٥Ľ                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ŭ                              | 2 4                                                                                                                            | 6 8 10 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | $Q^2 / (G$                                                                                                                     | aeV/c) <sup>2</sup> 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

# Conclusion

- Extraction of the  $G_{E}^{p}/G_{M}^{p}$  ratio from single-arm electron and coincidence data are shown.
- Measurement of the beam-target asymmetry in elastic electronproton scattering offers an independent technique of determining the  $G_{E}^{P}/G_{M}^{P}$  ratio.
- This is an 'exploratory' measurement, as a by-product of the SANE experiment.
- The data point at  $Q^2=2.06 (GeV/c)^2$  is very consistent with the recoil polarization data.
- The weighted average data point of the coincidence data at  $Q^2=5.66 (GeV/c)^2$  has large error due to the lack of elastic events.
- Dedicated precision experiment feasible.
- Publication is underway !

#### SANE Collaborators:

Argonne National Laboratory, Christopher Newport U., Florida International U.,
Hampton U., Thomas Jefferson National Accelerator Facility, Mississippi State U., North
Carolina A&T State U., Norfolk S. U., Ohio U., Institute for High Energy Physics, U. of
Regina, Rensselaer Polytechnic I., Rutgers U., Seoul National U., State University at New
Orleans, Temple U., Tohoku U., U. of New Hampshire, U. of Virginia, College of
William and Mary, Xavier University of Louisiana, Yerevan Physics Inst.
Spokespersons: S. Choi (Seoul), M. Jones (TJNAF), Z-E. Meziani (Temple),
O. A. Rondon (UVA)



# Backup Slides

#### Nucleon Elastic Form Factors $(G_E, G_M)$

- They are functions of the four-momentum transfer squared, Q<sup>2</sup>
- Defined in context of single-photon exchange.
- Describe how much the nucleus deviates from a point like particle.
- Describe the internal structure of the nucleons.
- Provide the information on the spatial distribution of electric charge (by electric form factor,  $G_{E}^{p}$ ) and magnetic moment ( by magnetic form factor,  $G_{M}^{p}$ ) within the proton.
- Can be determined from elastic electron-proton scattering.

At low 
$$|q^2|$$
  
 $G_E(q^2) \approx G_E(\vec{q}^2) = \int e^{i\vec{q}\cdot\vec{r}}\rho(\vec{r})d^3\vec{r}$   
 $G_M(q^2) \approx G_M(\vec{q}^2) = \int e^{i\vec{q}\cdot\vec{r}}\mu(\vec{r})d^3\vec{r}$ 

Fourier transforms of the charge,  $\rho(r)$ and magnetic moment,  $\mu(r)$  distributions in Breit Frame

At 
$$q^2 = 0$$
  
 $G_E(0) = \int \rho(\vec{r}) d^3 \vec{r} = 1$   
 $G_M(0) = \int \mu(\vec{r}) d^3 \vec{r} = \mu_P = +2.79$ 

# Two-Photon Exchange

- Theoretically suggested to explain the dramatic discrepancy between Rosenbluth and recoil polarization technique.
- Both Rosenbluth method and the polarization transfer technique account for soft TPE correction, one soft and one hard photon exchange, but neither consider two hard photon exchange.
- TPE amplitude has been calculated theoretically.

 $\frac{\sigma_r}{G_M^2} = 1 + \frac{\varepsilon}{\tau} \frac{G_E^2}{G_M^2} + 2\varepsilon \frac{G_E}{\tau G_M} \Re\left(\frac{\delta \tilde{G}_E}{G_M}\right) + \dots$ 

TPE has an  $\boldsymbol{\mathcal{E}}$  dependence that has the same sign as the G<sub>E</sub> contribution to the cross section.

- This is large enough to effect the extra--cted value of G<sub>E</sub>
- Therefore, the extracted  $G_E/G_M$  for the Rosenbluth technique is reduced.
- TPE can explain form factor discrepancy.
- The effect of TPE amplitude on the polarization components is small, though the size of the contribution change with *ε*.

 $\sigma_{\rm r}$  is the reduced cross section



# Two-Photon Exchange: Exp. Evidence

#### Theoretical suggestion is not enough !!!

The size of the TPE can be measured by,

- Taking the ratio of cross sections, R for elastic electronproton scattering to positron-proton scattering at a fixed  $Q^2$
- Measuring the deviation of R from 1.

$$R = \frac{\sigma_{e+}}{\sigma_{e-}} = \frac{\left(A_{1\gamma} + A_{2\gamma}\right)^2}{\left(A_{1\gamma} - A_{2\gamma}\right)^2} \approx 1 + 4 \operatorname{Re}\left(A_{2\gamma} / A_{1\gamma}\right)$$

• The dedicated experiments at OLYMPUS, CLAS at Hall B and Novosibirsk/ VEPP-3 test the hypothesis of TPE.

OLYMPUS/DESY: analysis in progress

CLAS/Jlab:

D. Rimal et al., arXiv:1603.00315v1

D. Adikaram et al., PRL 114, 062003 (2015)

Novosibirsk/VEPP-3: I.A. Rachek et al., PRL 114, 062005 (2015)



# Proton Radius Puzzle

Accurate knowledge of  $G_{E}^{p}$  at low  $Q^{2}$  is important to determine the proton charge radius.

At low Q<sup>2</sup>,  

$$\begin{aligned}
G_E(\mathbf{q}^2) &= \int_0^\infty \rho(r) r^2 \, dr \int_0^\pi \sin \theta \, d\theta \left( 1 + i |\mathbf{q}| r \cos \theta - \frac{1}{2} \mathbf{q}^2 r^2 \cos^2 \theta + ... \right) \\
G_E(\mathbf{q}^2) &= 1 - \frac{1}{6} \mathbf{q}^2 \int |\mathbf{x}|^2 \rho(|\mathbf{x}|) \, d^3 \mathbf{x} + ... \\
&= 1 - \frac{1}{6} \mathbf{q}^2 \left\langle r^2 \right\rangle + ...
\end{aligned}$$

In electron scattering, the root-mean-square radius, r is defined in terms of the slope of the electric form factor at  $Q^2=0$ 

$$\left\langle r_E^2 \right\rangle = -6 \frac{dG_E^p(Q^2)}{dQ^2} \Big|_{Q^2 \to 0}$$

•  $7 \sigma$  discrepancy between muonic hydrogen Laml shift and combined electronic Lamb shift and electron scattering



Plot inherited from J. Bernauer

Test :  $\mu$  P scattering (MUSE)

One possible reason is the systematic uncertainty of  $G^{p}_{E}$  measurement at low  $Q^{2}$ 

## Polarized Target



NMR

Signal Out

Liquid

Helium

NMR Coil

≣ ≣ 5 T

To Pumps

Refrigerator

LN<sub>2</sub>

T

#### Beam / Target Polarizations



#### **Determination of the Dilution Factor**

#### What is the Dilution Factor ?

The dilution factor is the ratio of the yield from scattering off free protons(protons from H in NH<sub>3</sub>) to that from the entire target (protons from N, H, He and Al)



### **Determination of the Dilution Factor**

- The background shape under the elastic peak was generated using carbon target.
- The simulated carbon yields are then normalized by the scaling factor calculated from data/MC yields for the region  $0.03 < \delta < 0.08$ .
- Data were taken using both top and bottom targets.
- Due to low statistics, an average dilution factor has calculated using an integration method.
- Integrals were taken only for the region -0.02 <  $\delta$  < 0.02.





#### Form Factor Ratio Extraction

The beam - target asymmetry, A<sub>p</sub>

$$A_{P} = \frac{-br\sin\theta^{*}\cos\phi^{*} - a\cos\theta^{*}}{r^{2} + c}$$

 $heta^*$  and  $\phi^*$  are calculated from,

$$\theta^* = \arccos(-\sin\theta_q \cos\phi_e \sin\beta + \cos\theta_q \cos\beta)$$
$$\phi^* = -\arctan\left(\frac{\sin\phi_e \sin\beta}{\cos\theta_q \cos\phi_e \sin\beta + \sin\theta_q \cos\beta}\right) + 180^\circ$$

 $\theta$  q is the 4-momentum angle determined from data.  $\beta$  is the target magnetic field direction, 80° to the beam axis.

• The  $G_{E}^{p}/G_{M}^{p}$  is extracted by,

$$\frac{G_E}{G_M} = -\frac{b}{2A_p}\sin\theta^*\cos\phi^* + \sqrt{\frac{b^2}{4A_p^2}\sin^2\theta^*\cos^2\phi^* - \frac{a}{A_p}\cos\theta^* - c}$$

$$\Delta r = \Delta \left( \frac{G_E}{G_M} \right) = \left( \frac{\partial \left( \frac{G_E}{G_M} \right)}{\partial A_p} \right) \cdot \Delta A_p$$

*a*, *b*, *c* are the kinematic factors determined from,

$$a = 2\tau \tan \frac{\theta_e}{2}\sqrt{1+\tau+(1+\tau)^2 \tan^2 \frac{\theta_e}{2}}$$
$$b = 2\tan \frac{\theta_e}{2}\sqrt{\tau(1+\tau)}$$
$$c = \tau + 2\tau(1+\tau)\tan^2 \frac{\theta_e}{2}$$



$$\tau = \frac{Q^2}{4M^2}$$

## Results

#### The systematic Errors

- The systematic Error is dominated by the target polarization.
- The final relative systematic uncertainty has been obtained by summing all the individual contributions quadratically.

| Measurement                  | Error | $\Delta \mu G_E/G_M/\mu G_E/G_M \ (\%)$ |
|------------------------------|-------|-----------------------------------------|
| E (GeV)                      | 0.003 | 0.07                                    |
| E' (GeV)                     | 0.004 | 0.13                                    |
| $\theta_e \ (\mathrm{mrad})$ | 0.5   | 0.54                                    |
| $\theta^* \text{ (mrad)}$    | 1.22  | 0.54                                    |
| $\phi^* \text{ (mrad)}$      | 0.3   | 0.01                                    |
| $P_T \%$                     | 5.0   | 5.0                                     |
| $P_B \%$                     | 1.5   | 1.5                                     |
| Packing Fraction, pf %       | 5     | 1.34                                    |
| Total                        |       | 9.13                                    |

#### The total relative systematic uncertainty on $\mu_{p}G^{p}_{E}/G^{p}_{M}$ has been estimated as 5.44%

# Asymmetry Measurements

 $\sigma_{+-} = \sigma_0 - P_F P_T \Delta \sigma$ 

$$\sigma$$
 - Scattering cross section

- $\sigma_{\scriptscriptstyle 0}$  Scattering cross section at unpolarized target
- $\sigma_{\rm B}$  Scattering cross section from background
- $\Delta \sigma$   $\sigma$  due to the spin of the target
- $\boldsymbol{P}_{E}~$  Beam polarization
- $\boldsymbol{P}_{T}~$  Target polarization
- f Dilution factor

 $\frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = P_E P_T \cdot \frac{\Delta \sigma}{\sigma_0} = \frac{N_+ - N_-}{N_+ + N_-} = A_r$  $\frac{A_r}{P_E P_T} = \frac{\Delta \sigma}{\sigma_0} = A_p$ 

With background....

$$\sigma_{++} = \sigma_0 + P_E P_T \Delta \sigma + \sigma_B$$

$$\sigma_{+-} = \sigma_0 - P_E P_T \Delta \sigma + \sigma_B$$

$$A_r = P_E P_T \cdot \frac{\Delta \sigma}{(\sigma_0 + \sigma_B)}$$

$$A_{r} = P_{E}P_{T} \cdot \frac{\Delta\sigma}{\sigma_{0}} \cdot \frac{\sigma_{0}}{(\sigma_{0} + \sigma_{B})} f$$
$$A_{P} = \frac{A_{r}}{fP_{E}P_{T}}$$

Hence,

the physics asymmetry,  $A_p$  is the relative scattering cross section correction due to the spin.  $A_r$  is the raw asymmetry.

## Packing Fraction

- Packing Fraction, *pf* is the actual amount of target material used.
- Determined by taking the ratio of volume taken by ammonia to the target cup volume.
- Estimated by comparing NH<sub>3</sub> data to MC simulation.
- Need to determine the packing fractions for each of the  $NH_3$  loads used during the data taking.





- Take the *pf* which gives a data to MC ratio 1.
  - *Pf* for Bottom target is determined as 56%.



# Each target type contributions for the $10\% < \delta < 12\%$ (Top target)



## Parallel field Magnetic Configuration C run 73027 (No He) C run 72953 (ebeam = 5.895 GeV, (ebeam = 4.733 GeV, P=3.2 GeV/C, P=3.1 GeV/C, $\theta$ =15.41°) $\theta$ =20.2°)



# Beam Time

|                | Energy     | $\Theta_{_{ m N}}$ | $\Theta_{N}$ Time (Proposal FOM h) |        | FOM h)   |
|----------------|------------|--------------------|------------------------------------|--------|----------|
|                | GeV        |                    | Proposal                           | Actual | Fraction |
| Calibration    | 2.4        | off, 0,180         | 47                                 | 25     | 53%      |
| Production     | 4.7        | 180                | 70                                 | 20     | 29%      |
|                | 4.7        | 80                 | 130                                | 98     | 75%      |
|                | 5.9        | 80                 | 200                                | 143    | 72%      |
|                | 5.9        | 180                | 100                                | ≥35    | ≥35%     |
|                |            |                    |                                    |        |          |
| Commissioni    | ng [calend | lar days]          | 14.0                               | 99     |          |
| Total [calenda | ar days]   |                    | 70.0                               | 141    |          |

SANE is a single arm inclusive scattering experiment. Measured proton spin structure functions  $g_1(X,Q^2)$  and  $g_2(X,Q^2)$  at four-momentum transfer  $2.5 < Q^2 < 6.5 (\text{GeV/c})^2$ and 0.3 < X < 0.8



# What HMS is used for .....

HMS detected electrons with momenta from 1 to around 5 GeV/c  $\,$ 

- 1. Packing fraction determination.
  - Used the ratio of data/MC yields for C target to determine the packing fraction.

#### 2. Asymmetry measurements.

- Inclusive Asymmetries:  $Q^2$  of 0.8, 1.3 and 1.8  $(GeV/c)^2$
- Elastic Asymmetries:

Measured the elastic asymmetries at magnetic field of 80<sup>0</sup> and hence the ratio of form factors,  $\mu_{p}G_{E}^{p}/G_{M}^{p}$ 

- From single arm data at  $Q^2 = 2.06 (GeV/c)^2$
- From coincidence data at  $Q^2 = 5.66 (GeV/c)^2$

## Results

|                           | Single Arm             |                        | Coincidence        |                    |
|---------------------------|------------------------|------------------------|--------------------|--------------------|
|                           | $-8\% < \delta < 10\%$ | $10\% < \delta < 12\%$ |                    |                    |
| E (GeV)                   | 5.895                  | 5.895                  | 5.893              | 4.725              |
| $\theta_q \text{ (Deg)}$  | 44.38                  | 46.50                  | 22.23              | 22.60              |
| $\phi_q \text{ (Deg)}$    | 171.80                 | 172.20                 | 188.40             | 190.90             |
| $\theta_e \ (\text{Deg})$ | 15.45                  | 14.92                  | 37.08              | 43.52              |
| $\phi_e \text{ (Deg)}$    | 351.80                 | 352.10                 | 8.40               | 10.95              |
| $Q^2 (\text{GeV/c})^2$    | 2.20                   | 1.91                   | 6.19               | 5.14               |
| $\theta^*$ (Deg)          | 36.31                  | 34.20                  | 101.90             | 102.10             |
| $\phi^*$ (Deg)            | 193.72                 | 193.94                 | 8.40               | 11.01              |
| $A_p \pm \Delta A_p$      | $-0.216 \pm 0.018$     | $-0.160 \pm 0.027$     | $-0.006 \pm 0.077$ | $0.184 \pm 0.136$  |
| $\mu r \pm \Delta(\mu r)$ | $0.483 \pm 0.211$      | $0.872 \pm 0.329$      | $0.937 \pm 0.428$  | $-0.052 \pm 0.678$ |
| predicted $\mu r$         | 0.73                   | 0.78                   | 0.305              | 0.38               |
| predicted $A_p$           | -0.186                 | -0.171                 | 0.107              | 0.097              |

Where,  $\mu$  – Magnetic Moment of the Proton=2.79

#### The systematic Errors

- The systematic Error is dominated by the target polarization.
- The final relative systematic uncertainty has been obtained by summing all the individual contributions quadratically.

The total relative systematic uncertainty on  $\mu_{p}G_{E}^{p}/G_{M}^{p}$  has been estimated as 5.44%

| Mooguromont                  | Freer | $\Delta u C / C / u C / C (0_{1})$   |
|------------------------------|-------|--------------------------------------|
| Measurement                  | EIIOI | $\Delta \mu G_E/G_M/\mu G_E/G_M(70)$ |
| E (GeV)                      | 0.003 | 0.07                                 |
| E' (GeV)                     | 0.004 | 0.13                                 |
| $\theta_e \ (\mathrm{mrad})$ | 0.5   | 0.54                                 |
| $\theta^* \text{ (mrad)}$    | 1.22  | 0.54                                 |
| $\phi^* \text{ (mrad)}$      | 0.3   | 0.01                                 |
| $P_T \%$                     | 5.0   | 5.0                                  |
| $P_B \%$                     | 1.5   | 1.5                                  |
| Packing Fraction, $pf \%$    | 5     | 1.34                                 |
| Total                        |       | 9.13                                 |