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● Measure proton spin structure  
    function g2 (X,Q2) and  
    spin asymmetry A1(X,Q2)  
    at four-momentum transfer  
    2.5 < Q2 <6.5 GeV2 and 
    0.3 < X <0.8 
    by measuring anti-parallel and near-perpendicular spin asymmetries. 
● Study twist -3 effects (d2 matrix element)  and moments of g2 and g1 
● Comparison with Latice QCD, QCD sum rule  
● Explore “High” XB region: A1 at XB~1 

Physics from BETA: 

•  SANE is a single arm inclusive scattering experiment. Used 
•  Big Electron Telescope Array     – BETA In single arm mode 
•  High Momentum Spectrometer – HMS  in both single arm and   
   coincidence  mode  

Goal of the SANE 



1.  Packing fraction determination. 
§  Used the ratio of data/MC yields for C target to 

determine the packing fraction. 

§  From single arm data at Q2   =2.06 (GeV/c)2 
§  From coincidence data at Q2 =5.66 (GeV/c)2 

Physics from HMS : 
HMS detected electrons with momenta from 1 to around 5 GeV/c 

2.  Asymmetry measurements.  
§  Inclusive Asymmetries: Q2 of 0.8, 1.3 and 1.8 (GeV/c)2 

§  Elastic Asymmetries: 
                  Measured the elastic asymmetries at magnetic field of 800  and    
                  hence the ratio of form factors, μpGE

p/GM
p 
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Physics Motivation 

θk = (E1,p1)

k′ = (E3,p3)

q = (ν,q)

p = (E2,p2)

p′ = (E4,p4)

Elastic scattering in one-photon exchange (BORN) approximation 

The four-momentum transfer 
squared, 

Q2 = −q2 = 4E1E3 sin
2 θ
2
"

#
$
%

&
'

E1 −E3 =
Q2

2M

The differential cross section describing the scattering of 
a particle into an element of solid angle, dΩin the lab 
frame,   

2

The electromagnetic fine structure constant �, the weak coupling constant gw and

gz are all su⇤ciently small at all energies. However, the strong coupling constant

�s is small only in the high energy in the limit of asymptotic freedom1 leaving the

possibility to use perturbation theory to carry out calculations of particle decay rates

and scattering cross sections. Starting from the ’Fermi’s Golden Rule’, which is a

general expression giving the transition rate (number of transmissions per unit time)

from an initial state | i⇤ of energy Ei to the set of final states | f⇤ with energies Ef

= Ei, the invariant amplitude or so-called Lorentz Invariant Matrix Element, M and

hence the di⇥erential cross section d⇧ for the scattering is derived in [5] as;

d⇧ =
¯| M |2

64⌅2ME1

d3p�

p�0
d3k�

k�0 ⇥(4)(k + p� k� � p�), (1.1.1)

where k, p and k�, p� are the initial and final particle four-momenta. The bar over

the square of the scattering amplitude indicates that it is to be averaged over the

spin states of the initial particles and summed over the spin states of the outgoing

particles; in other words, the equation (1.1.1) refers to the unpolarized cross section.

By integrating over all possible outgoing momenta, assuming the two-body scat-

tering process of the form 1 + 2 ⇥ 3 + 4 , the above equation (1.1.1) modifies to the

di⇥erential cross section describing the scattering of a particle into an element of solid

angle, d� in the lab frame,

d⇧

d�
=

1

64⌅2

�
E3

ME1

⇥2

| Mfi |2, (1.1.2)

where E1 and E3 are the energies of the incoming and scattered particle, respectively.

Note that d� = 2⌅dcos ⇤ and that E3 depends on the scattering angle ⇤. The above

1at low energies, the probed distance is larger and therefore, the strong force between quarks are
stronger, QCD is non-perturbative. At higher energies, the probed distance is small, this is where
the quarks are asymptotically free, the force between quarks becomes weak, and perturbative QCD
applies.

F1 – non-spin flip (Dirac Form Factor) describe the charge distribution 
F2 – spin flip (Pauli form factor) describe the magnetic moment distribution 

For pure QED interactions, 
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Since non-zero Electric Dipole Moment, F̃2 and Anapole Moment, F̃3 [13, 14]

are parity-odd, these form factors can appear only for parity violatiing interactions.

Because QED is parity invariant, the discussion about these form factors is beyond

this thesis and more details about F̃2 and F̃3 can be found in [12].

1.1.1.4 Elastic Form Factors

The only form factors that appear in pure QED interactions from the expression

(1.1.14) are F1 and F2. Therefore the vertex function becomes;

�⇤ = ⇥⇤F1(q
2) + i⌅⇤� q�

2M
F2(q

2). (1.1.25)

These form factors are fundamental properties of the nucleon representing the e⇤ect of

its structure on its response to electromagnetic probes such as electrons. As explained

in Section 2.1, F1(0) = 1 gives the proton charge in units of e, and F2(0) gives the

anomalous magnetic moment.

By substituting Equation (1.1.25) into Equation (1.1.13) and then using Equation

(1.1.2), one can calculate the di⇤erential cross section for unpolarized electron-proton

elastic scattering in the lab frame similar to Equation (1.1.9) as;

�
d⌅

d⇥

⇥

lab

=

⇧
�2

4E2
1 sin

4 ⇥
2

⌃
E3

E1

⇤�
F 2
1 � q2

4M2
F 2
2

⇥
cos2

⇤

2

� q2

2M2
(F1 + F2)

2 sin2 ⇤

2

⌅
.

(1.1.26)

Another commonly used choice of the form factors are the linear combinations of

them,

GE(q
2) = F1(q

2)� ⇧F2(q
2)

GM(q2) = F1(q
2) + F2(q

2)

⇧ =
Q2

4M2
=

�q2

4M2

(1.1.27)

The invariant amplitude of the e-N reaction is, 
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moment e~/2Mc, we would have the same Equation (1.1.9) for the di⇥erential cross

section. But, in reality, the proton is not a point charge. It has an internal structure

with quarks and gluons. Therefore, we need to modify our matrix element accordingly

by keeping our electron tensor as is and addressing the proton tensor separately:

¯|M |2 = e4

q4
Lµ�
e W proton

µ� (1.1.12)

The black solid circle in Figure 1.3 indicates that the QED vertex factor is to be

modified to take in to account the nucleon’s internal electromagnetic structure. By

applying the Feynman rules for QED, the invariant amplitude for elastic e�N scat-

tering can be read from the diagram as

�iM = ū(k⇥)(ige�
µ)u(k)

�
�i

gµ�
q2

⇥
ū(p⇥)(�ige�

�)u(p). (1.1.13)

Here we notice that one of the electron vertex factors, �µ from the lepton-lepton scat-

tering in Equation (1.1.3), which represents scattering from a spin-1/2 point particle

is replaced by the nucleon vertex factor, or current �� which describes a spin-1/2

composite proton. Its magnetic moment is determined by the combined spin and

orbital angular momentum of three valence quarks, the surrounding sea of transient

quark-antiquark pairs and gluons that fluctuate in and out of existence in the strong

color field of the valence quarks. Therefore, the nucleon vertex factor �� in Equation

(1.1.13) can be generalized as;

�µ = �µF1 + (iF2 + F̃2�5)⇥µ�q
� + F̃3(qµ ⇥ q � q2�µ)�5, (1.1.14)

by noting that the electromagnetic current is conserved [12]. The objects F1, F2, F̃2, F̃3

are called form factors. These form factors are Lorentz invariant quantities which are

the functions of q2 = (p� p⇥)2. Here I summarize the physics of these form factors.

Sachs Form Factors                                                           ;                                                         
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�
d⌅

d⇥

⇥

lab

=

⇧
�2

4E2
1 sin

4 ⇥
2

⌃
E3

E1

⇤�
F 2
1 � q2

4M2
F 2
2

⇥
cos2

⇤

2

� q2

2M2
(F1 + F2)

2 sin2 ⇤

2

⌅
.

(1.1.26)

Another commonly used choice of the form factors are the linear combinations of

them,

GE(q
2) = F1(q

2)� ⇧F2(q
2)

GM(q2) = F1(q
2) + F2(q

2)

⇧ =
Q2

4M2
=

�q2

4M2

(1.1.27)
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Form Factor Ratio at High Q2   
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•  Dramatic discrepancy between    
      Rosenbluth and recoil polarization   
      technique. 
 
•  Not only the slope of Gp

E at low Q2 and  
hence the charge radius still uncertain, 

     but also Gp
E/Gp

M is uncertain at high Q2. 

•  Multi-photon exchange considered   
      the  best candidate for the dramatic    
      discrepancy between Rosenbluth  
      and recoil polarization technique.  
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Form Factor Ratio Measurements  
1.  Rosenbluth Seperation Method. 
 

•  Measure the electron -  unpolarized  proton elastic scattering cross section at 
fixed Q2 by varying the scattering angle, θe. 

•  Strongly sensitive to the radiative corrections.  

dσ
dΩ

=
α 2 "E cos2 θe

2
4(1+τ )E3 sin4 θe

2

GE
2 +

τ
ε
GM
2#

$%
&

'(

Q2 = 2E !E (1− cosθe )

ε = 1+ 2(1+τ )tan2 θe
2

!

"#
$

%&

−1

τ =
Q2

4M 2

σMott
(1+τ )

dσ
dΩ

⋅
ε(1+τ )
σMott

=GE
2ε +τGM

2

 E    - Incoming electron energy 
 E/  - Outgoing electron energy 
θe - Outgoing electron scattering angle 
 M  - Proton mass 
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τGM
2 

GE
2 

θ=180o θ=0
o 

è Determine 
   |GE|, |GM|, 

   |GE/GM| 



2.  Polarization Transfer Technique. 
•  Measure the recoil proton polarization from the elastic scattering of polarized 

electron-unpolarized proton. 
•  Insensitive to absolute polarization, analyzing power. 
•  Less sensitive to radiative correction.  

GE

GM

= −
PT
PL

(E + "E )tan θe 2( )
2Mp

 E   -   Incoming electron energy 
 E/  -  Outgoing electron energy 
θe - Outgoing electron scattering angle 
 MP - Proton mass 
 

PN = 0 Polarization normal to scattering  
plane. 

PT = 2 τ (1+τ )GEGM tan θe / 2( ) Polarization perpendicular to q 
(in the scattering plane)      

PL =MP
−1(E + "E ) τ (1+τ )GM

2 tan2 θe / 2( ) Polarization along q 
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3.  Double-Spin Asymmetry. 
•  Measure the cross section asymmetry between + and – electron helicity states in 

elastic scattering of a polarized electron on a polarized proton. 
•  The systematic errors are different when compared to either the Rosenbluth 

technique or the polarization transfer technique. 
•  The sensitivity to the form factor ratio is the same as the Polarization Transfer 

Technique. 

cr
abrAP +

−−
= 2

*** coscossin θφθ

29

k⇥

k
h = ±1

⌅q,⇤

�� ⇥�

ûy

ûx

ûz

⌅P

Figure 2.2. Polarized electron scattering from a polarized target.

Where ⇤+ is the cross section at the even combination of beam and target spins,

(++,- -) and ⇤� is that of the odd combination of (+-,-+).

For a polarized target, the measured asymmetry, Araw, is related to the physical

asymmetry, A, by

Araw = PBPTA (2.1.21)

where PB and PT are electron beam and target polarizations, respectively. By in-

serting Equations (2.1.19) and (1.1.29) into Equation (2.1.20), we can obtain the

expression for the physical asymmetry;

A = �
2
⇤
⌅(1 + ⌅) tan(�/2)

G2
E + ⇥

�G
2
M

�
sin �⇥ cos⇧⇥GEGM

+
⌅

⌅ [1 + (1 + ⌅) tan2(�/2)] cos �⇥G2
M

⇥
.

(2.1.22)

It is evident from Eq. (2.1.22) that to extract GE, the target polarization in the lab-

oratory frame must be perpendicular with respect to the momentum transfer vector

⌃q within the reaction plane, i.e. �⇥ = ⇥/2 and ⇧⇥ = 00 or 1800. For these conditions,

r  = GE /GM 

a, b, c  =  kinematic factors 
    ,     =  pol. and  azi. Angles between    and   
     Ap  =    The beam - target asymmetry 

 

*φ

Here, 

q

S

GE

GM

= −
b
2Ap

sinθ * cosφ* + b2

4Ap
2 sin

2θ * cos2φ* − a
AP
cosθ * − c

θ *
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•     Double-Spin Asymmetry is   
         an independent technique  
         to verify the discrepancy. 
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Elastic (e, e’p) scattering from  
the polarized NH3 target using a 
longitudinally polarized electron 
beam 
(Data collected from Jan – March, 2009) 

•  HMS for the scattered  
  proton detection 
•  Central angles are      
  22.3° and 22.0° 
•  Solid angle ~10 msr 
 

    Hall C at 
Jefferson Lab 

•  BETA for coincidence electron   
   detection 
•  Central scattering angle: 40° 
•  Over 200 msr solid angle   
   coverage 
 

Experiment Setup  
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BigCal 

Tracker 

Cherenkov 

Lucite Hodoscope 

Big Electron Telescope Array – BETA 

 
•  3 planes of Bicron Scintillator provide    
   early particle tracking 
 
 
 

 
•  N2 gas cerenkov 
•  Provides particle ID 
•  8 mirrors and 8 PMTs 

 
•  28 bars of 6cm wide Lucite 
•  Bars oriented horizontally for Y      
  tracking 
•  PMTs on either side of bar provides   
   X resolution 

Lead glass calorimeter 
•  1744 blocks aprx. 4cm x 4cm 
•  energy and position measurement 
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High Momentum Spectrometer – HMS 

X,X’ 

V,V’ U,U’ 

α 

∆Z = 81.2 cm 

Drift Cham I Drift Cham  II 
α = ± 15° 

(β = L/c x TOF) 

Time of particle 
   detection, T 

           Length of the  
particle trajectory, L=2.2 m 

S1 plane S2 plane 

X1,  Y1 X2,  Y2 

 
•  4 layers of 10 cm x 10cm x70cm blocks stacked 13 high. 
•  Used as a Particle ID 

 
•  Each plane contains 10 to 16  Scintillator paddles    
  with  PMTs on both ends     
•  Each Paddle is 1.0 cm thick and 8.0 cm wide 
 
 
 
 

•  Fast position determination & triggering 
•  Time of Flight (TOF) = T2-T1 determines β 
    
 

 
•  Two mirrors (top & bottom) connected to two PMTs 
•  Used as a Particle ID 
 

                                                              
•  Each plane has a set of alternating field and  
   sense wires Filled with an equal parts   
   Argon-Methane mixture 
 
 
 
 
•  Track particle trajectory by  multiple planes. 
•  χ2 fitting to determine a straight trajectory.   
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ΘB	  =	  180° 

ΘB	  =	  80° 

( 80 and 180 deg ) 

Polarized Target Magnetic Field 

14 

•  Average target polarization is ~ 70 % 
•  Average beam polarization is ~ 73 % 
 

 
 • Used Dynamic Nuclear  
    Polarization (DNP)  to 
    polarized NH3 target. 

•   Used only perpendicular  
   magnetic field configuration 
   for the elastic data 



Run Dates Beam Energy Magnet 
Orientation 

Run Hours/ 
Proposed PAC  hours 

Average Beam 
Polarization 

Spectrometer   
mode 

Coincidence Coincidence Single Arm 

HMS Detects  Proton  Proton Electron 

E Beam 
GeV 

4.72 
 

5.89 
 

5.89 

PHMS 
GeV/c 

3.58 4.17 4.40 

ΘHMS 
(Deg) 

22.30 22.00 15.40 

Q2 

(GeV/c)2 
5.14 6.19 2.06 

Total Hours 
(h) 

~40 
(~44 runs) 

~155 
(~135 runs) 

 ~12 
  (~15 runs)    

Elastic Events ~113 ~1200  ~2 x 104 

 

Elastic Kinematics 
( From HMS Spectrometer ) 
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E’ 

E 

Θ 

e-‐	  	  p	   	  	  	  	  	  	  	  e-‐	  	  p 

By knowing, 
 the incoming beam energy,    ,   
 scattered electron energy, 
 and  
 the scattered electron angle, 
   

!E

)(2222 EEMQMW ʹ′−+−=

⎟
⎠

⎞
⎜
⎝

⎛ʹ′=
2

sin4 22 θEEQ

θ

E
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 Single-arm Data 
(Electrons in HMS) 



§   The Relative Momentum (δ) 

P - Measured momentum in HMS 

Pc- HMS central momentum 

!

"#$%&'!
(!)*!'+),

)-.%.#,/)0
12!3#./!

.%.#,/)01!

45)01!

§   Particle Identification (PID)  

Elastic Event Selection  

!

!   Momentum Acceptance 

The elastic data are outside of 
the usual delta cut +/- 8% 

Use -8% <        <10% 

hsdelta = P !Pc
Pc( ) = !pp

P -Measured momentum in HMS 

Pc-HMS central momentum 

Invariant Mass, W (GeV/c2) 

hs
de

lta
 (%

) 

& 

Use 10% <        <12% 

!p
p

!p
p 14 

"!#$%&'()*!

+!#
,
*!

Used the relative 
momentum  

acceptance cuts, 
Used the Cherenkov and calorimeter cuts, 
  # of  Cerenkov photoelectrons > 2                                                            
     
     

ECal
P

>  0.7                               

         -  Total measured shower energy of a 
               chosen electron track by HMS  
               Calorimeter 

ECal

       -8% <δ<10%  

       10% <δ<12%  
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δ =
P −PC( )

PC



 Extracted the Asymmetries 
The raw asymmetry, Ar 

  N+ / N- = Charge and live time normalized   
                   counts for the +/- helicities 
      ∆Ar    = Error on the raw asymmetry 
     
      

−+

−+
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−
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Need dilution factor, f in order to determine the physics asymmetry, and   
Gp

E/Gp
M(at Q2=2.2 (GeV/c)2 ) 

 

C
TB

r
p N

PfP
AA +=

  f       =  The dilution factor :  The ratio of the yield from scattering off free protons (protons from H in   
              NH3) to that from the entire target (protons from N, H, He and Al) 
PBPT    = Beam and target polarization 
 Nc     = A correction term to eliminate the contribution from quasi-elastic scattering on polarized    
                   14N under the elastic peak (negligible in SANE)      

 Use MC/DATA comparison for NH3 target to extract the dilution factor….. 



!
!

!
!

"#
$!%
#&
'()
'!*
'&
+
+$

,-&
.!*

/!

*0!1-2(,-1-&!3!14('!

56!78$9:);6!

"#
$!<
=-
+!
<1
),=

-!>
1,(
=.!
8 ?
:8

@!

The constant physics asymmetry, Ap were read 
separately, 

For each target type and 
For two different δ regions. 

•  The weighted average Ap of top and 
bottom targets were taken.  

•  The expected physics asymmetries from 
the known form factor ratio for each Q2 
by Kellys form factor parameterization (J. 
J. Kelly, Phys. Rev. C70(6), 2004) are 
shown by dashed lines separately for the 
two δregions. 19 

NH3 top 
NH3 bottom 
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      10% <δ< 12% 

      -8% < δ < 10% 

The Physics Asymmetry 



Run Dates Beam Energy Magnet 
Orientation 

Run Hours/ 
Proposed PAC  hours 

Average Beam 
Polarization 

Spectrometer   
mode 

Coincidence Coincidence Single Arm 

HMS Detects  Proton  Proton Electron 

E Beam 
GeV 

4.72 
 

5.89 
 

5.89 

PHMS 
GeV/c 

3.58 4.17 4.40 

ΘHMS 
(Deg) 

22.30 22.00 15.40 

Q2 

(GeV/c)2 
5.14 6.19 2.06 

Total Hours 
(h) 

~40 
(~44 runs) 

~155 
(~135 runs) 

 ~12 
  (~15 runs)    

e-p Events ~113 ~1200  ~2 x 104 

Elastic Kinematics 
( From HMS Spectrometer ) 
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ΘP 

Xclust 

Yclust 

e

e
’ 

P 

Definitions : 
•  X/Yclust   -  Measured X/Y positions  
                      on BigCal 
      X = horizontal /in-plane coordinate 
       Y = vertical / out – of – plane  
             coordinate   

By knowing  
the energy of the polarized electron 

beam, EB  
and  

the scattered proton angle,	  ΘP 
 

We can predict the  
•  X/Y coordinates , X_HMS,  Y_HMS   
                                   on the BigCal 
   ( Target Magnetic Field Corrected) 
 

∆X = X_HMS – Xclust 
∆Y =  Y_HMS  –  Yclust            

 Coincidence Data 
(Electrons in BETA and Protons in HMS) 

 Coincidence Data 
(Electrons in BETA and Protons in HMS) 



θ

X_HMS-Xclust/ cm 

X_HMS-Xclust  (cm) 

Y_
H

M
S-

Yc
lu

st 
  (

cm
) 

4.72 GeV data 

5.89 GeV data 

X_HMS-Xclust  (cm) 

Y_
H

M
S-

Yc
lu

st 
  (

cm
) 

•  The Elliptic cut, 

Suppresses background 
most effectively 

Here,  X(Y)max  = The effective area cut, 10 (7) cm            

•  The relative momentum cut,  

127

Applying an elliptical cut to the �X and �Y distributions;

⇤�
�X

Xcut

⇥2

+

�
�Y

Ycut

⇥2

� 1

achieves a better background suppression than using the cuts on �X and �Y sep-

arately because the shape of the cut matches the shape of the elastic peak in two-

dimensional space, (�X,�Y ). Compared to the rectangular cut (black), an elliptical

cut (red) rejects events at the corners of the rectangle where the signal-to-backgrount

ratio is lower leading to a cleaner sample of events. Figure 4.14 shows an elliptical cut

with (Xcut, Ycut) = (7, 10) cm applied to the �Y vs �X spectra at both Q2 = 5.17

(GeV/c)2 and Q2 = 6.26 (GeV/c)2. The �p spectrum of all events after applying

the elliptical cut is shown in Figure 4.15 in which a much cleaner selection of elastic

events is achieved than compared to Figure 4.13.
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Figure 4.15. �p spectra of all events after applying the elliptical cut at Q2 = 5.17
(GeV/c)2 (left) and Q2 = 6.26 (GeV/c)2 (right).

Even after applying an elliptical cut, there is a tail at negative values of �p which

implies that still there are some events passing the elliptical cut comes from inelastic

reactions such as �0 photo-production. In order to suppress these inelastic events,

a cut around the elastic peak in �p of ±3⇥ is applied. Figure 4.16 shows the �X

−0.02 ≤ ΔP ≤ +0.02

1
2

max

2

max

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ

Y
Y

X
X
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PHMS – Measured proton momentum by HMS 
Pcal   -  Calculated proton momentum.	  
Pcent – HMS central momentum 

( )νν MPCal 22 +=
M
Q
2

2

=ν

θ
θ

222

222
2

sin2
cos4
EMEM

EMQ
++

=

ΔP =
δp
p
=
PHMS −PCal

Pcent

Elastic Event Selection  



•  The weighted average Ap and their 
errors for the two beam energies, 
5.895 GeV and 4.730 GeV are also 
shown.  

 
•  The expected physics asymmetries 

from the known form factor ratio for 
each Q2 by Kelly’s form factor 
parameterization (J. J. Kelly, Phys. Rev. 
C70(6), 2004) for the two beam 
energies are shown by dashed lines. 
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The Physics Asymmetry 
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•  Because of the higher error bar on 
the coincidence data point at 
Q2=5.66 (GeV/c)2, the systematic 
uncertainty studies were not done. 

For the higher Q2, Only the statistical 
error is shown in the plot.  

2 4 6 8 10 12
0

0.2
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0.6

0.8

1

1.2

1.4
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1.8
Qattan (Jlab 2005)
Christy (Jlab 2004)
Andivahis (SLAC 1994)
Walker (SLAC 1994)
Borkowski (Mainz 1975)
Bartel (DESY 1973)
Berger (Bonn 1971)
Litt (SLAC 1970)
Bartel (DESY 1967)
Janssens (SLAC 1966)

Paolone (Jlab 2010)
Ron (Jlab 2007)
Crawford (Bates 2007)
Hu (Jlab 2006)
Jones (Jlab 2006)
MacLachlan (Jlab 2006)
Punjabi (Jlab 2000/2005)
Strauch (Jlab 2003)
Gayou (Jlab 2002)
Dieterich (Mainz 2001)
Pospischil (Mainz 2001)
Gayou (Jlab 2001)
Milbrath (Bates 1993)
Zhan (Jlab 2011)
Meziane (Jlab 2011)
Puckett (Jlab 2010)
SANE

Kelly 2004
Dipole

2 / (GeV/c)2Q

p M
 / 

G
p E

 G p
µ

186

Table 5.1 shows the extracted form factor ratios, (µpr)exp for each Q2, the extrapo-

lated ratios, (µpr)ext to the average Q2, Q2
Avg using the parameterization by Kelly [50]

together with the weighted average of the extrapolated ratios for both single-arm and

coincidence data.

Table 5.1. The extracted form factor ratios for each Q2, the extrapolated ratios to
the average Q2 using the parameterization by Kelly [50] together with
the weighted average of the extrapolated ratios for both single-arm and
coincidence data.

single-arm Coincidence
�8%<�<10% 10%<�<12%

Q2 (GeV/c)2 2.20 1.91 6.19 5.14
(µpr)exp 0.576 ± 0.217 0.973 ± 0.298 0.937 ± 0.428 �0.052 ± 0.678
Q2

Avg (GeV/c)2 2.06 5.66
(µpr)ext 0.599 ± 0.217 0.948 ± 0.298 0.975 ± 0.428 �0.089 ± 0.678
W. Avg. (µpr)ext 0.720± 0.176 0.672± 0.362

Table 5.2 shows the final µpG
p
E/Gp

M ratios with the statistical and systematic

uncertainties together with the average Q2 values. Because the form factor ratio at

higher Q2 of 5.66 (GeV/c)2 is largely dominated by the statistical uncertainty, the

systematic uncertainty for this measurement was not studied.

Table 5.2. The results of the form factor analysis from the experiment SANE.
Both the statistical and systematic uncertainties are shown for the lower
Q2=2.06 (GeV/c)2 while only the statistical uncertainty is shown for the
higher Q2=5.66 (GeV/c)2.

Q2
Avg (GeV/c)2 µpG

p
E/Gp

M ± �µpG
p
E/Gp

M(stat) ± �µpG
p
E/Gp

M(syst)

2.06 0.720 ± 0.176 ± 0.033
5.66 0.244 ± 0.353

Compared to the uncertainty of µpG
p
E/Gp

M from the � region �8%<�<10% as

shown in Table 4.10, the relative error has decreased from ⇠44% to ⇠29%, a relative

decrease by 34% as shown in Table 5.2 by taking the weighted average between the

two measurements in both � regions. This improvement is due to an extra 40% events

gain by the higher � region 10%<�<12%.

The resulting form factor ratio is obtained by, 
     Extrapolating both measurements to average Q2 using Kelly’s parameterization and 
     Taking the weighted average.  
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The total relative systematic 
uncertainty on μpGp

E/Gp
M has been 

estimated as 5.44% 



  
 

�  Extraction of the Gp
E/Gp

M  ratio from single-arm electron and 
coincidence data are shown. 

� Measurement of the beam-target asymmetry in elastic electron-
proton scattering offers an independent technique of 
determining the Gp

E/Gp
M  ratio. 

�  This is an ‘exploratory’ measurement, as a by-product 
of the SANE experiment. 

�  The data point at Q2=2.06 (GeV/c)2 is very consistent with the 
recoil polarization data. 

�  The weighted average data point of the coincidence data at 
Q2=5.66 (GeV/c)2 has large error due to the lack of elastic 
events. 

� Dedicated precision experiment feasible. 
�  Publication is underway ! 
 

 
 

Conclusion 
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SANE Collaborators: 
Argonne National Laboratory, Christopher Newport U., Florida International U., 
Hampton U.,  Thomas Jefferson National Accelerator Facility, Mississippi State U., North 
Carolina A&T State U., Norfolk S. U., Ohio U., Institute for High Energy Physics, U. of 
Regina, Rensselaer Polytechnic I., Rutgers U., Seoul National U., State University at New 
Orleans , Temple U., Tohoku U., U. of New Hampshire, U. of  Virginia, College of  
William and Mary, Xavier University of Louisiana,  Yerevan Physics Inst. 
Spokespersons:  S.  Choi (Seoul),  M. Jones (TJNAF),  Z-E.  Meziani (Temple), 
                               O. A. Rondon (UVA) 



Backup Slides 



•  They are functions of the four-momentum transfer squared, Q2 

•  Defined in context of single-photon exchange. 
•  Describe how much the nucleus deviates from a point like particle. 
•  Describe the internal structure of the nucleons. 
•   Provide the information on the spatial distribution of electric charge (by electric form   
      factor,Gp

E) and magnetic moment ( by magnetic form factor, Gp
M) within the proton. 

•  Can be determined from elastic electron-proton scattering. 

At  02 =q
GE (0) = ∫ ρ(r )d3r =1

GM (0) = ∫ µ(r )d3r = µP = +2.79

µP
GE

p

GM
p =1

At low || 2q
GE (q

2 ) ≈GE (
q2 ) = ei

q⋅r∫ ρ(r )d3r

GM (q
2 ) ≈GM (

q2 ) = ei
q⋅r∫ µ(r )d3r

Fourier transforms of the charge,  
and magnetic moment,         distributions 
in Breit Frame 

)(rµ
)(rρ

Nucleon Elastic Form Factors (GE, GM)  
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•  Theoretically suggested to explain the dramatic discrepancy between 
     Rosenbluth and recoil polarization technique. 
•  Both Rosenbluth method and the polarization transfer technique  
     account for soft TPE correction, one soft and one hard photon exchange,  
     but neither consider two hard photon exchange. 
•  TPE amplitude has been calculated theoretically. 
 
 
 
•  TPE has anεdependence that has the 
     same sign as the GE contribution to the 
     cross section. 
•  This is large enough to effect the extra- 
     -cted value of GE 
•  Therefore, the  extracted GE/GM for the 
      Rosenbluth technique is reduced. 
•  TPE can explain form factor discrepancy. 
•  The effect of  TPE amplitude on the  
     polarization components is small, though 
     the size of the contribution change withε. 

Rosenbluth data with 
two-photon exchange 
correction 
Polarization transfer data 

J. Arrington, W. Melnitchouk, J.A. Tjon,  
Phys. Rev. C 76 (2007) 035205  

σ r

GM
2 =1+

ε
τ
GE
2

GM
2 + 2ε

GE

τGM

ℜ
δ GE

GM

"

#
$

%

&
'+.....

Born TPE 

σr is the reduced cross section 
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Two-Photon Exchange 



•  The dedicated experiments at OLYMPUS, CLAS at Hall B and Novosibirsk/
VEPP-3 test the hypothesis of  TPE. 

R = σ e+

σ e−

=
A1γ + A2γ( )
A1γ − A2γ( )

2

2

≈1+ 4Re A2γ
A1γ

#

$
%

&

'
(

The size of the TPE can be measured by, 

•  Taking the ratio of cross sections, R for elastic electron-
proton scattering to positron-proton scattering at a 
fixed Q2 

•  Measuring the deviation of R from 1. 

Theoretical suggestion is not enough !!! 
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Two-Photon Exchange: Exp. Evidence 

CLAS/Jlab: 
D. Rimal et al., arXiv:1603.00315v1 
D. Adikaram et al., PRL 114, 062003 (2015)  

Novosibirsk/VEPP-3: 
I.A. Rachek et al., PRL 114, 062005 (2015) 

OLYMPUS/DESY: analysis in progress 



Proton Radius Puzzle 
Accurate knowledge of Gp

E at low Q2 is important to determine the proton charge radius. 
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multiplied by ⌅ which is small at smaller Q2. Therefore, neglecting the G2
M term, the

Rosenbluth formula (2.1.4) can be further simplified to

d⇤/d�

d⇤/d�Mott

= (GE(q
2))2. (2.1.5)

Comparing the cross section ratio at low Q2, Equation (2.1.5), of electron scattering

from a static charge distribution to the electron scattering from a point charge (see [5],

Equation (8.1)), it is confirmed that the static charge distribution, GE(q2) (at proton

in rest frame) is related to the Fourier transform of the proton’s charge distribution

⇥(x).

GE(Q
2) ⇤= GE(q

2) =

⇧
⇥(x)eiq·x d3x. (2.1.6)

Expanding the exponential in powers of q for a spherically symmetric charge distri-

bution, ⇥ = ⇥(r ⇥ |x|), this becomes

GE(q
2) =

⇧ �

0

⇥(r)r2 dr

⇧ �

0

sin � d�

⇤
1 + i|q|r cos � � 1

2
q2r2 cos2 � + ...

⌅

GE(q
2) = 1� 1

6
q2

⇧
|x|2⇥(|x|) d3x+ ...

= 1� 1

6
q2

�
r2
⇥
+ ...

(2.1.7)

meaning that, at leading order in q2, the electric form factor simply measures the

r.m.s. charge radius of the nucleon. From the above equation,

�
r2
⇥
= �6

dGE

dQ2
|Q2=0 (2.1.8)

i.e., in electron scattering, the root-mean-square radius, r is defined in terms of the

slope of the electric form factor at Q2 = 0. Similarly, Equation (2.1.4) shows that in

the non-relativistic limit, the magnetic form factor GM(q2) can also be interpreted as

At low Q2,  

In electron scattering, the root-mean-square radius, r is defined in terms of the slope of the electric 
form factor at Q2=0     

Lepton scattering from a nucleon: 

F1, F2 are the Dirac and Pauli form factors 

Sachs form factors: 

Fourier transform (in the Breit frame) 
gives spatial charge and magnetization 
distributions 

Vertex currents: 

Derivative in Q2 ! 0 limit: 

Lepton scattering and charge radius 

µ±, e± 

Expect identical result for ep and µp scattering 

8 

•  7σdiscrepancy between muonic hydrogen Lamb 
shift and combined electronic Lamb shift and 
electron scattering      

proton radius puzzle  

One possible reason is the systematic 
uncertainty of Gp

E measurement at low Q2  
31 

The Proton Puzzle

 [fm]
ch

Proton charge radius R
0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

H spectroscopy

scatt. Mainz

scatt. JLab

p 2010µ

p 2013µ electron avg.
σ7.9 

From the 2014 Review of Particle Physics
Until the difference between the e p and µp values is
understood, it does not make sense to average the values
together. For the present, we give both values. It is up to
the workers in this field to solve this puzzle.

40Test :  μP scattering (MUSE) 

Plot inherited from J. Bernauer 



Polarized Target 

The Polarized Target Assembly 

 • C, CH2 and NH3 
 • Dynamic Nuclear Polarization (DNP) polarized the   
   protons in the  NH3  target up to 90% at 

 1 K Temperature 
  5 T Magnetic Field 
•   Temperature is maintained by immersing the entire target   
   in the liquid He bath 
 • Used microwaves to excite spin flip   
    transitions 
    (55 GHz - 165 GHz) 
 • Polarization measured using NMR 
    coils 
• To maintain reasonable target  
   polarization, the beam current, 

Ø   limited to 100 nA 
Ø  was uniformly rastered. 
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Beam /Target Polarizations 

COIN data 

Single arm electron data 
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Determination of the Dilution Factor 
What is the Dilution Factor ? 

The dilution factor is the ratio of the yield from scattering 
off free protons(protons from H in NH3) to that from the 
entire target (protons from N, H, He and Al) 

Invariant Mass, W (GeV/c2) 

Each target type contributions   
                (Top target) 
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F =
YieldData −YieldMC(N+He+Al )

YieldData

Dilution Factor, 

      -8% <         < 10% δp
pInvariant Mass, W (GeV/c2) 

The Relative Dilution Factor 



F =
YieldData −YieldMC(C )

YieldData

Dilution Factor, 

•  The background shape under the elastic peak was generated using carbon target. 
•  The simulated carbon yields are then normalized by the scaling factor calculated from data/MC 

yields for the region 0.03<δ<0.08. 
•  Data were taken using both top and bottom targets. 
•  Due to low statistics, an average dilution factor has  
      calculated using an integration method. 
•  Integrals were taken only for the region -0.02<δ<0.02. 

!

!
!
!
!
!
!

"#$#!

Fbot =
541− 92
541

= 0.830

!"#$#!

Ftop =
606−130
606

= 0.785
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Determination of the Dilution Factor 



§  The beam - target asymmetry, Ap 

cr
abrAP +

−−
= 2

*** coscossin θφθ

GE

GM

= −
b
2Ap

sinθ * cosφ* + b2

4Ap
2 sin

2θ * cos2φ* − a
AP
cosθ * − c

Δr = Δ GE

GM

"

#
$

%

&
'=

∂ GE
GM( )

∂Ap

"

#

$
$
$

%

&

'
'
'
⋅ΔAp

θ ∗ φ∗    and      are calculated from, 
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The polar and azimuthal angles, ⇤� and ⌅� are calculated as,

⇤� = arccos(� sin ⇤q cos⌅e sin � + cos ⇤q cos �)

⌅� = � arctan

�
sin⌅e sin �

cos ⇤q cos⌅e sin � + sin ⇤q cos �

⇥
+ 180⇥.

(4.9.3)

The out-of-plane angle of the scattered electron defined as ⌅e is further increased

by bending downward due to the target magnetic field. The average ⌅e is estimated

by reading the mean value of the measured ⌅e distribution for the elastic events. The

three-momentum transfer vector, q̃ points at an angle of ⇤q which is the scattered

proton angle determined event-by-event by the elastic kinematics of the electron in

HMS, and the mean value of ⇤q was determined. The angle � is the target magnetic

field direction, 80⇥ to the beam Z axis toward the BETA detector package. Then

⇤� and ⌅� can be calculated using Equation 4.9.3. The proton form factor ratio,

r = Gp
E/G

p
M is extracted using the physics asymmetries, Ap for both ⇥ regions for the

single-arm data. Equation 4.9.1 has two solutions for Gp
E/G

p
M . The positive value

was chosen because of the negative value is unphysical.

The errors of the form factor ratio Gp
E/G

p
M , �r were determined by propagating

the errors of the physics asymmetry, �Ap.

The ratio of Gp
E/G

p
M and its error were obtained for both ⇥ regions separately.

Figure 4.43 shows the predicted Ap for a range of Q2 values according to the form

factor parametrization [49]. Since ⇤q varies with Q2 and hence ⇤� varies, the black

line is the calculated Ap for known Q2 with di⇥erent ⇤� calculated according to each

Q2. The di⇥erent colored lines show the calculated Ap as a function of Q2 at constant

⇤� as shown in the legends. The two black data points are the experimental Ap values

for the single arm data at the two di⇥erent ⇥ regions. The figure shows that the two

data points are consistent with the expected asymmetry Ap within their errors.

a, b, c are the kinematic factors determined 
from, 
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where, r = GE/GM , and ⇥� and ⌅� are the polar and azimuthal angles between the

momentum transfer vector, ⇧q and the proton’s spin vector. The kinematic factors are

given by;

a = 2⇤ tan
⇥e
2

⇥
1 + ⇤ + (1 + ⇤)2 tan2 ⇥e

2

b = 2 tan
⇥e
2

�
⇤(1 + ⇤)

c = ⇤ + 2⇤(1 + ⇤) tan2 ⇥e
2

(4.9.2)

with ⇤ = Q2

4M2 .

The four-momentum transfer squared, Q2 was calculated by using all three elastic

electron variables, incoming electron beam energy, E, scattered electron energy, E ⇥,

and the scattered electron angle, ⇥e. The Q2(E,E ⇥, ⇥e) calculated only from the elastic

events were extracted by comparing with the Montecarlo simulation yields. Figure

4.41 shows the data to simulation yield comparison of Q2(E,E ⇥, ⇥e) for two � regions.

Figure 4.41. The data (blue markers) to Montecarlo simulation yields (red) com-
parison of Q2(E,E ⇥, ⇥e) for the two � regions �8%<�<10% (left)
and 10%<�<12% (right). The simulated signal H and background
(N+He+Al) yields are also shown.

with 
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where, r = GE/GM , and ⇥� and ⌅� are the polar and azimuthal angles between the

momentum transfer vector, ⇧q and the proton’s spin vector. The kinematic factors are

given by;

a = 2⇤ tan
⇥e
2

⇥
1 + ⇤ + (1 + ⇤)2 tan2 ⇥e

2

b = 2 tan
⇥e
2

�
⇤(1 + ⇤)

c = ⇤ + 2⇤(1 + ⇤) tan2 ⇥e
2

(4.9.2)

with ⇤ = Q2

4M2 .

The four-momentum transfer squared, Q2 was calculated by using all three elastic

electron variables, incoming electron beam energy, E, scattered electron energy, E ⇥,

and the scattered electron angle, ⇥e. The Q2(E,E ⇥, ⇥e) calculated only from the elastic

events were extracted by comparing with the Montecarlo simulation yields. Figure

4.41 shows the data to simulation yield comparison of Q2(E,E ⇥, ⇥e) for two � regions.

Figure 4.41. The data (blue markers) to Montecarlo simulation yields (red) com-
parison of Q2(E,E ⇥, ⇥e) for the two � regions �8%<�<10% (left)
and 10%<�<12% (right). The simulated signal H and background
(N+He+Al) yields are also shown.

θq is the 4-momentum angle determined from data. 
βis the target magnetic field direction, 80° to the 
beam axis. 

§  The Gp
E/Gp

M is extracted by, 
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Form Factor Ratio Extraction 
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Measurement Error �µGE/GM/µGE/GM (%)
E (GeV) 0.003 0.07
E ⇥ (GeV) 0.004 0.13
�e (mrad) 0.5 0.54
�� (mrad) 1.22 0.54
⇥� (mrad) 0.3 0.01
PT % 5.0 5.0
PB % 1.5 1.5
Packing Fraction, pf % 5 1.34
Total 9.13

Table 4.11. Systematic uncertainty on each measurement and the relative system-
atic uncertainty on the µpG

p
E/G

p
M ratio due to the uncertainty on that

measurement for the single-arm data.
The total relative systematic 
uncertainty on μpGp

E/Gp
M has been 

estimated as 5.44% 

The systematic Errors 

•  The final relative systematic uncertainty has 
been obtained by summing all the individual 
contributions quadratically. 

•  The systematic Error is dominated by the 
target polarization. 

Results 
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σ =σ 0 +PEPTΔσ
σ   - Scattering cross section 
σ0  - Scattering cross section at unpolarized target 
σB - Scattering cross section from background 
Δσ- σ due to the spin of the target 
PE   -  Beam polarization 
PT   -  Target polarization 
 f     -  Dilution factor 

σ ++ =σ 0 +PEPTΔσ

σ +− =σ 0 −PEPTΔσ

σ ++ −σ +−

σ ++ +σ +−

= PEPT ⋅
Δσ
σ 0

=
N+ − N−

N+ + N−

= Ar

Ar
PEPT

=
Δσ
σ 0

= Ap

Hence,  
       the physics asymmetry, Ap is the relative    
      scattering cross section correction due to the spin. 
        Ar is the raw asymmetry. 

With background…. 
σ ++ =σ 0 +PEPTΔσ +σ B

σ +− =σ 0 −PEPTΔσ +σ B

Ar = PEPT ⋅
Δσ

(σ 0 +σ B )

Ar = PEPT ⋅
Δσ
σ 0

⋅
σ 0

(σ 0 +σ B )
f 

AP =
Ar
fPEPT 38 

Asymmetry Measurements 



Packing Fraction 
•  Packing Fraction, pf is the actual amount of target material 

used. 
•  Determined by taking the ratio of volume taken by ammonia 
      to the target cup volume. 
•  Estimated by comparing NH3 data to MC simulation.  
•  Need to determine the packing fractions for each of the NH3 

loads used during the data taking. 
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•  Take the pf which gives a data to MC 
ratio 1. 

•  Pf for Bottom target is determined as 
56%. 

NH3 data to MC comparison for pf=60% (Bottom target) 
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Invariant Mass, W (GeV/c2) 

159

!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!

!
"#$%&'%#(!)%**+!,!-./01234!

!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!

!

"#$%&'%#(!)%**+!,!-./01234!

!

Figure 4.33. The total data and the total simulated MC (top), the simulated back-
ground with the polynomial fit (middle) and the background subtracted
elastic peak (bottom) for the two � regions �8%<�<10% (left) and
10%<�<12% (right) for the top target using run 72795.
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The calculated dilution factor as a function of W is then shown in Figure 4.34.
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Figure 4.34. The calculated dilution factor for �8%<�<10% (top) and 10%<�<12%
(bottom) for the top target using run 72795.

Similarly, the MC contributions to the total data for di�erent target types are

shown in Figure 4.35 for the bottom target using the NH3 run 72790.

Following the same procedure as for run 72795 shown above, the dilution factor

was also calculated for the bottom target as a function of W . Figure 4.36 shows

the relative dilution factors calculated for both top and bottom targets for the two

di�erent � regions.

The dilution factor is zero and flat for W<0.85 GeV/c2, indicating that the N+He+

Al background shape is matched well with data in this region after normalizing all

inelastic MC contributions by a constant scaling factor. The dilution factor increases

with W and reaches its maximum at the proton mass of 0.938 GeV. It then starts to

drop o� to near a constant value of 0.1 for W>1.0 GeV/c2. The raw asymmetry, Arc

Invariant Mass, W (GeV/c2) 

The Dilution Factor 

      10% <      < 12% δEach target type contributions for the    
                (Top target) 
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§  Parallel field Magnetic Configuration 
C run 73027 (No He)  
(ebeam = 4.733 GeV, P=3.2 GeV/C, 
     =20.20) θ

srastx =  0.10 cm 
srasty = -0.10 cm 

C run 72953 (ebeam = 5.895 GeV,  
P=3.1 GeV/C,     =15.410) θ

srastx =  0.18 cm 
srasty = -0.02 cm 



Beam Time 
 

                      Energy          ΘN                 Time (Proposal FOM h) 
             GeV                              Proposal     Actual     Fraction 

Calibration        2.4        off, 0 ,180            47              25             53% 
Production        4.7   180            70              20             29% 

             4.7               80                 130             98             75%                
            5.9               80                 200            143            72% 

               5.9              180                100            ≥35          ≥35% 
 
Commissioning [calendar days]                 14.0             99 
Total [calendar days]           70.0            141 
 

          
 



1.  Packing fraction determination. 
§  Used the ratio of data/MC yields for C target to 

determine the packing fraction. 

§  From single arm data at Q2   =2.06 (GeV/c)2 
§  From coincidence data at Q2 =5.66 (GeV/c)2 

SANE is a single arm inclusive scattering experiment. Measured proton spin 
structure functions g1 (X,Q2) and g2 (X,Q2) at four-momentum transfer 
                                                                    2.5 < Q2 <6.5 (GeV/c)2and 
                                                                    0.3 < X <0.8 
 What HMS is used for ….. 

HMS detected electrons with momenta from 1 to 
around 5 GeV/c 

2.  Asymmetry measurements.  
§  Inclusive Asymmetries: Q2 of 0.8, 1.3 and 1.8 (GeV/c)2 

§  Elastic Asymmetries: 
                  Measured the elastic asymmetries at magnetic field of 800  and    
                  hence the ratio of form factors, μpGE

p/GM
p 
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Where, μ – Magnetic Moment of the Proton=2.79 

The systematic Errors 
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Measurement Error �µGE/GM/µGE/GM (%)
E (GeV) 0.003 0.07
E ⇥ (GeV) 0.004 0.13
�e (mrad) 0.5 0.54
�� (mrad) 1.22 0.54
⇥� (mrad) 0.3 0.01
PT % 5.0 5.0
PB % 1.5 1.5
Packing Fraction, pf % 5 1.34
Total 9.13

Table 4.11. Systematic uncertainty on each measurement and the relative system-
atic uncertainty on the µpG

p
E/G

p
M ratio due to the uncertainty on that

measurement for the single-arm data.

The total relative systematic uncertainty 
on μpGp

E/Gp
M has been estimated as 5.44% 

•  The final relative systematic uncertainty has 
been obtained by summing all the individual 
contributions quadratically. 

•  The systematic Error is dominated by the 
target polarization. 

Results 
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Single Arm Coincidence
�8%<�<10% 10%<�<12%

E (GeV) 5.895 5.895 5.893 4.725
⇥q (Deg) 44.38 46.50 22.23 22.60
⇤q (Deg) 171.80 172.20 188.40 190.90
⇥e (Deg) 15.45 14.92 37.08 43.52
⇤e (Deg) 351.80 352.10 8.40 10.95
Q2 (GeV/c)2 2.20 1.91 6.19 5.14
⇥� (Deg) 36.31 34.20 101.90 102.10
⇤� (Deg) 193.72 193.94 8.40 11.01
Ap ±�Ap �0.216± 0.018 �0.160± 0.027 �0.006± 0.077 0.184± 0.136
µr ±�(µr) 0.483± 0.211 0.872± 0.329 0.937± 0.428 �0.052± 0.678
predicted µr 0.73 0.78 0.305 0.38
predicted Ap �0.186 �0.171 0.107 0.097

Table 4.10. The physics asymmetries, and extracted form factor ratios together with
the experimental parameters for both single-arm and coincidence data.
The expected ratio µGE/GM from Kelly’s form factor parametrization
[49] for each Q2 and the calculated Ap from the above predicted µr are
also shown. The errors �Ap and �(µr) are statistical.

The extracted µpG
p
E/G

p
M ratio for both data sets are shown in Figure 4.44 together

with the predicted µpG
p
E/G

p
M .

4.10 Systematic Error Estimation

Systematic errors are uncertainties due to the experiment measurements and the

experiment instruments. In contrast to the statistical error which fluctuates for each

individual measurement independently of others, the systematic error is a constant for

the measurements taken under the same condition. There is no well defined method to

treat or analyze the systematic errors. In this thesis data analysis, mostly, Montecarlo

simulation was used to estimate the systematic uncertainties from di⇥erent sources.

During SANE elastic data collection, HMS played the main role recording each

particle momentum and angle. HMS was placed at a defined central angle and with


