Status of GEM Trackers for Super Bigbite Spectrometer at JLab

Kondo Gnanvo (UVa)

On behalf of the SBS Collaboration

University of Virginia (UVa)

N. Liyanage, V. Nelyubin,

H. Nguyen, X. Bai, R. Wang

INFN Roma, Catania, Genoa

E. Cisbani, P. Musico

MPGD2015, Trieste-Italy, Oct. 2015

Outline

- GEM Trackers for Super Bigbite Spectrometer (SBS)
- Issues with large-area & light-weight GEM detectors
- APV25 readout electronics

The 12 GeV upgrade of CEBAF accelerator @ JLab

Physics program in Hall A for the CEBAF 12 GeV era @ JLab

Beam: 50 μ A, E=8.8 and 11 GeV (80% long. Pol.) Target: 65% polarized 3He ← GEn(2)/PR-09-016 ⇒ Luminosity: 1.4×10³⁷ cm⁻²s⁻¹, 0.05 sr

ECalo

GEM

MPGD2015 Conference, Trieste Italy

1/10 of proton HERMES

60 days of production

expected stat. accuracy:

Requirements for the Super Bigbite Spectrometer (SBS)

Experiments	Luminosity (s⋅cm²)⁻¹	Tracking Area (cm²)	Resolution		
			Angular (mrad)	Vertex (mm)	Momentum (%)
GMn - GEn	up to 7.1037	40x150 and 60x200	< 1	<2	0.5%
GEp(5)	up to 8.10 ³⁸	40x150, 60x200	<0.7	~ 1	0.5%
Most demanding		and 80x300	~1.5		
SIDIS	up to 2.1037	40x150 and 60x200	~ 0.5	~1	<1%
	High rate	Large area	Spatial resolution < 100 microns		

Proton arm of the SBS in the Gep(5) configuration

High photon backgound up to 250 MHz/cm² and electron background 160 kHz/cm²

10/13/2015

-arge acceptance

Large luminosity

0

MPGD2015 Conference, Trieste Italy

SBS GEM Trackers

Front Tracker (FT): Track of the recoil protons

- 1^{st} tracker: 6 GEM layers, active area of $150 \times 40 \text{ cm}^2$
- Each layers: vertical stack of 3 GEM modules $(50 \times 40 \text{ cm}^2)$
- Total production of 18 modules

Back Tracker (BT): Proton Polarimetry

- Polarization of the recoil protons
- 2nd & 3rd Trackers: 10 layers, active area of 200 × 60 cm²
- Each layer: vertical stack of 4 GEM modules $(60 \times 50 \text{ cm}^2)$
- Total production of $40 \ (+5)$ modules

Back Tracker layer (UVa)

Assembly of the SBS GEM modules

Assembly steps of the Front Tracker GEMs

GEM foil with the visible contact of the HV sectors

leakage current test

GEM foil on the mechanical stretcher

Support frame for GEM with 300 um spacers inside the active area

Frames on a custom holder for cleaning in Ultrasonic bath

Two dimensional flexible readout board

SBS GEM modules

- Spatial resolution < 0.1 mm; high radiation tolerance
- Lightweight triple-GEM detectors (0.7% radiation length)
- Readout layer: 2D x/y strip ala COMPASS (0.4 mm pitch)
- APV25-based electronics with VME64x modules (total channels > 120K channels)

K. Gnanvo et al. Nucl. Inst. and Meth., A782, 77-86 (2015)

Production Status

Front Tracker GEMs

- 18 modules to be completed by mid 2017
- 8 modules already assembled with 4 tested
- One full layer integrated with APV25 cards @ JLab
- 4 layers expected by end 2016

Carbon fiber Holding frame More compact and more rigid option minimize thermal deformation

Production Status

Back Tracker GEMs

- 45 modules to be completed by mid 2017
- Production rate of 2 modules / month
- 19 modules successfully tested as of Oct. 2015

Holding frame:

- 4 modules: 2 modules sitting directly on the frame (bottom plane), other 2 modules on L-shape (top plane)
 - This minimizes dead area
 - And allow easy replacement of the modules and of the FE cards
- The holding frames are under production @ JLab

MPGD2015 Conference, Trieste Italy

10/13/2015

Performance in Test Beam

FT GEM modules high Intensity Proton beam in Julich COSY Test Beam (Oct. 2014)

- proton beam (small spot ~ few cm²)
- Different dividers on different module
- Investigate HV and gas flow

- Efficiency slightly affected by the high beam intensity
- No noticeable effects from gas flow rate

- very low gain (m4)

Blue

Performance in Test Beam

BT GEM modules in Test Beam @ FNAL (Oct. 2013)

- Two SBS BT GEM prototypes tested at FTBF
- APV25-SRS electronic tested at trigger rate 400 Hz
- Data analysis for spatial resolution, gain efficiency, gain uniformity, timing of the APV25 signal ...
- FNAL test beam data reveals big issues (Gas flow, Quality of X/Y readout board etc)

SRS + SRU Readout using DATE @ FTBF

- 64 APV's read out by SRS
- · Acquiring data from FECs with an SRU
- Current DAQ rate is ~150 Hz
- Using 6-9 25ns time slices for digitization
- Beam structure: 4s spills, 1min rep. time, 10 20k particles/spill
- Trigger: coincidence of 3 scintillators

Large GEM Test Beam Setup @ (FNAL) UVa & FIT

Performances in test Beam

10/13/2015

Outline

GEM Trackers for Super Bigbite Spectrometer SBS

Issues with large-area & light-weight GEM detectors

APV25 readout electronics

Analysis of the APV25 signal timing from the FNAL Test Beam data

- We looked at the spatial distribution of the the APV25 signal peak w.r.t. the trigger delay (arbitrary reference)
- Strong spatial non uniformity of the signal timing → Induced charge signal collected later by the readout strips in the center of the detector than at the edges.
- Difference as high as 4 time bins (100 ns) between center and edges

Distribution of time bin of the signal peak

• Excellent timing correlation of the signal in x-strips and y-strips \rightarrow the readout electronics not the source

X-Y correlation of the time bin of the signal peak

Cause: Deformation of the readout board due to over pressure caused by the gas flowing inside the detector10/13/2015MPGD2015 Conference, Trieste Italy15

Measurement of the deformation of the readout board

Setup of a test (see cartoon on the left) to measure the bending of the readout board (honeycomb support) with the Ar/CO₂ flow rate inside the chamber Measurement were taken at 4 location on the bottom side of the honeycomb support The measured deflection of 100 units is equivalent to 2.54 mm A gas flow = 10 units represent about 2 volumes (V) change / hour in the GEM chamber (V = 3.6 L)

10/13/2015

Measurement of the deformation of the readout board

- APV25 signal peak time bin measured with Sr90 source at different flow rates.
- Amplitude of the non uniformity depend on the gas flow (more precisely built-up pressure in the chamber)
- Clear correlation between the time bin of signal peak and the deformation of the readout board

10/13/2015

Solution: Compensate the deformation of the readout board with a bottom gas volume

- Adding the bottom gas window significantly reduce considerably the spatial non uniformity of the signal speak time bin at high gas flow rate
- In addition, we also slightly change the gas flow design of the chamber to reduce the pressure built-up inside the chamber

Entrance gas window foil collapse

Problem

- High particle rate over a large area of the detector ⇒ charging up of the Kapton foil ⇒ Strong electrostatic attraction between gas window & drift cathode
- Strong distortion of the APV25 signal (timing and shape)
 Initial proposed solution
- A simple initial fix was to add some spacers in the gas window region of the chamber
- We saw a improvement but not sure about long term stability of the fix in high rate condition

Entrance gas window foil collapse

Final proposed solution

- Use aluminized gas window foil and set it to the same potential as the drift cathode → Faraday
 cage like to prevent charges accumulation on the gas window as well as the top layer of the drift
- Tested with SBS-BT-GEM with x-ray source at high rate > 1 MHz /cm2 equivalent MIP.
 - Without the HV on the gas window \Rightarrow foil collapse after a few hours of x-ray exposure
 - With the HV on, we did not observe any collapse after 5 days of almost continuous exposure

Outline

GEM Trackers for Super Bigbite Spectrometer SBS

Issues with large-area & light-weight GEM detectors

APV25 readout electronics

Readout electronics for SBS GEM Trackers

- Use analog readout APV25 chips
- 2 actives components: APV25 Front end cards & VME64x module: Multi Purpose Digitizer (MPD)
- HDMI cables to transfer data between these two components

APV25 FE cards and Back planes

Different versions of the APV25 FE card produced

- v 4.10 with ZIF connectors for the FT Modules
- v 4.11 with Panasonic connectors for BT Modules

Backplanes

Used in the Front Tracker with RH LVPS

Original design for the Back Tracker (UVa) with RH LVPS

v 4.0 Front Tracker GEM

v 4.11 Back Tracker GEM (UVa)

UVa Backplanes @ EES

10/13/2015

Multi Purpose Digitizer (MPD) card

- VME64x board perform the digitization of analog signals from the FE cards and handle the slow control signals
- DDR2 (128 MB), 110 MHz system clock
- Compliant with JLab VME64x VITA 41 (VXS) standard
- 6 HDMI-A connectors for data and sow control signals

MPD block diagram

Long (23 m) HDMI cable effects on APV25 analog signal

