GEn Analysis Notes 7/31/25

Update from Vimukthi:

- GEM calibration document has some more documentation
- Front Y and Track phi show a slightly different pattern as expected
 - Reflect the long target
- Track value constraint
 - Constraint == centering offset
 - This needs to be redetermined every time BBCal energy calibration is done
 - o Front x is usually the only one that needs a significant offset
- Front constraint is dictated by the calorimeter energy calibration centering and width
- Back constraint is less sensitive to quality of energy calibration
- Timestamp is db_bb.dat was written incorrectly
 - Runs effected are 5044-5785 (GEN4b)
 - Might be due to a git merge? Unclear what happened, but in the future, we should just double check our database
- DB corrected, and the peaks are looking as expected
- 70% increase in coincidence events that pass global cuts
- Only a 26% increase when further QE cuts are applied
- Still need to go through the analysis to estimate how many "good" neutrons were recovered
- Timing changes: tdiff = t primary t secondary [for HCal]
 - Can add cut for abs(tdiff)<2ns or <6ns
 - Can these cuts be incorporated into a dx analysis?
- How would this impact the data replay?
 - Eventually need to rerun the 4b runs that were affected
 - Need to use these improvements to redo the 4b BBCal energy calibration

Missing Neutron Discussion (Andrew and Gordon)

- Number of neutrons from 4a and 4b are approximately equal?
 - This issue found by Vimukthi effects 4b not 4a, so how does this change our perspective on the missing neutrons in 4a?
 - We need to look at integrated charge comparison between the two kinematics
- What might cause us to be missing tracks?
 - o Are we not selecting the correct QE track in our search region?
 - o Are there other tracks that are candidates?

- Short answer: if GEMs are efficient and the good signals are not contaminated by overlapping bckgd, there is little chance of the algorithm finding a "wrong" track
 - You are only looking at ~2-3% of the active area of the GEMs
 - At the SH layer +/-6cm in x and y (12x12cm square)
 - At front see +/-10-12cm horizontally
- More than one good track found in the search region, and every track beyond the first one is almost always a false track - can know by looking at ch^2 of straight-line fit
 - We typically have 4-5 hits to make a line, and things get murky when we only have 3 hits
- In GEn, the probability of finding another good charged particle track within the search region defined by BBCal is **not** big enough to worry about
 - Other detectors provide such strong constraints that we can be confident
- HOWEVER, if the individual GEMs are inefficient, and our good hits fail basic hit quality or timing criteria, then you may fail to find any track at all or find false tracks
 - Probably not an issue in Andrew's opinion
- GEM efficiency is likely around 80-90% with how they were operated in GEn
 - Intrinsic detection efficiency
- In the proposal for ERR committee, did we take into account that HCal was placed improperly?
 - This would be before GEn started
 - Summer of 2023 projections account for GEN3 as we actually ran it
 - Check the date of the report that Gordon used for his rate estimates
- How efficient is the trigger?
- Check hydrogen data?
 - Are our H2 data at the same luminosity as we had for He3?
 - Check beam currents and such
- o 3-hit tracks may include false tracks need to consider this
 - Grinch track correlation cuts can help with this
 - Hit quality criteria within the tracking algorithm are stricter for 3-hit tracks than for 4- or 5-hit tracks
 - Already baked into the tracking algorithm
- Try excluding 3-hit tracks?

- Check dx and dy and W2 and vz and coin compare for 3-hit vs 4+-hit tracks
 - 3-hit tracks should have a flat distribution of background false tracks
- What are timing and asymmetry cuts that reject background hits on the GEMs
 - Make sure they aren't too aggressive
- Look at software thresholds in the GEM analysis
 - Make sure they aren't too high
- Where were events recovered in GMn?
 - Mostly improved calibration of BBCal
 - Allowed a narrower search region
 - Filtering criteria
 - GMn had higher luminosity
 - Similar GEM background rates