

1.0 Define Inputs

b := 62.5mm	Side of module
a1 := 2·(28.14mm)	Distance between tension rods
$a2 := 2 \cdot (56.25 \text{mm})$	
n _L := 194	Number of layers of lead
n _s := 194	Number of layers of scintillator
t _L := 0.5mm	Thickness of lead
t _s := 1.5mm	Thickness of scintillator
tgap := .24mm	Thickness of gap

$\rho_{L} := .011340 \cdot \frac{\text{kg}}{\text{cm}^{3}}$	Density of lead
E _L := 2560ksi	Modulus of lead
$\rho_{\rm S} \coloneqq .001220 \frac{\rm kg}{\rm cm}^3$	Density of scintillator
E _s := 460ksi	Modulus of Scintillator
$\mu := 0.1$	Coefficient of Friction between layers
$D_{rod} := 2.5 mm$	Diameter of rods
Fy := 18000psi	Yield Strength of brass rods
E _{brass} := 15000ksi	Modulus of brass
E _{steel} := 30000ksi	Modulus of steel

2.0 Calculate Properties of Calorimeter

Length := $n_L \cdot t_L + n_s \cdot t_s = 388.00 \cdot mm$ Length = 15.28·in Area := 100cm^2 Weight := $n_L \cdot g \cdot \rho_L \cdot \text{Area} \cdot t_L + n_s \cdot g \cdot \rho_s \cdot \text{Area} \cdot t_s$ Weight = 32.1·lbf Weight = 142.7 N $q := \frac{\text{Weight}}{\text{Length}}$ $q = 2.10 \cdot \frac{\text{lbf}}{\text{in}}$

$$A_{rod} = 0.01 \cdot in^2$$

3.0 Pre-Loading

Assume a pre-load is applied to the stack and then four threaded rods are snugged to the stack and then the pre-loac is released.

 $F_{preload} := 500 \text{kg} \cdot \text{g} = 1102.31 \cdot \text{lbf}$

$$k_{\text{BrassRod}} := \frac{6A_{\text{rod}} \cdot E_{\text{brass}}}{\text{Length}} = 44827.75 \cdot \frac{\text{lbf}}{\text{in}}$$

$$k_{\text{SteelRod}} \coloneqq \frac{6A_{\text{rod}} \cdot E_{\text{steel}}}{\text{Length}} = 89655.51 \cdot \frac{\text{lbf}}{\text{in}}$$

$$\mathbf{k}_{\text{stack}} \coloneqq \left(\frac{\mathbf{n}_{\text{s}} \cdot \mathbf{t}_{\text{s}}}{\text{Area} \cdot \mathbf{E}_{\text{s}}} + \frac{\mathbf{n}_{\text{L}} \cdot \mathbf{t}_{\text{L}}}{\text{Area} \cdot \mathbf{E}_{\text{L}}}\right)^{-1} = 587175.52 \cdot \frac{\text{lbf}}{\text{in}}$$

$$\Delta_{\text{stack1}} \coloneqq \frac{F_{\text{preload}}}{k_{\text{stack}}} = 0.001877 \cdot \text{in}$$

 $\Delta_{rod1} := \frac{\Delta_{stack1} \cdot k_{stack}}{k_{BrassRod} + k_{stack}} = 0.00174 \cdot in$

$$F_{rod1} := \Delta_{rod1} \cdot k_{BrassRod} = 78.19 \cdot lbf$$
 Preload in r

Preload in rods due to initial applied load on stack

 $N_{req} := \frac{Weight}{\mu} = 320.77 \cdot lbf$ Required normal force to carry the load in friction

Use a preload on the rods that is twice the required value for safety factor

$$N_{\text{preload}} \coloneqq 2 \cdot N_{\text{req}} = 641.55 \cdot \text{lbf}$$

$$\Delta_{\text{rodN}} \coloneqq \frac{N_{\text{preload}}}{k_{\text{BrassRod}}} = 0.014 \cdot \text{in}$$

$$\sigma_{\text{rod}} \coloneqq \frac{N_{\text{preload}}}{6 \cdot A_{\text{rod}}} = 14053.15 \cdot \text{psi}$$

4.0 Calculate the increase in rod loading due to being cantilevered.

$$F_{\text{cantilever}} \coloneqq \frac{q \cdot \text{Length}^2}{a2 + 2a1 \cdot \left(\frac{a1}{a2}\right)} = 73.73 \cdot \text{lbf}$$
$$F_{\text{rod}} \coloneqq \frac{N_{\text{preload}}}{6} + F_{\text{cantilever}} = 180.65 \cdot \text{lbf}$$

$$\Delta_{\text{rodN}} := \frac{F_{\text{rod}}}{k_{\text{BrassRod}}} = 0.004 \cdot \text{in}$$

$$\sigma_{\text{rod}} \coloneqq \frac{F_{\text{rod}}}{6 \cdot A_{\text{rod}}} = 3957.21 \cdot \text{psi}$$

$$\sigma_{\text{scintillator}} := \frac{F_{\text{rod}}}{\text{Area}} = 11.65 \cdot \text{psi}$$

Tensile stress in rods

 $\tau_{\text{rod}} \coloneqq \frac{F_{\text{rod}}}{\pi \cdot D_{\text{rod}} \cdot \frac{3}{32} \text{in}} = 6231.82 \cdot \text{psi}$

Shear stress in threads

Brass tensile yield strength of 18000psi and the shear yield strength of the threads is 9000psi so both stresses are ok