

Status

冯存峰 (山东大学)

2016.1.21

Deformation of the pre-prototype

> Young's modulus:

- know one equipment in our institute lab, measure the young's modulus using resonance method.
 - Will meet the guy of the lab tomorrow.
- > Force calculation:
 - discussed with IHEP(Beijing) colleague, they will re-calculate the force when their time convenience.
 - They suggest us to check the deformation directly with lathe platform.

Lathe to check the deformation

- Special tool design
 - Hold the detector by one end
- The Lathe hold the round bar, the detector fixed on the plate
- The flatform of the lathe used as the standard.

名称: 六方闪烁体检查挠度固定板 材料: A 3 数量: 1 山东大学物理学院 孙 2016.01.21

10 PMTs received

> Type: CR284(=R11102)

Tapered divider

- Type 1: Hamamatsu recommendation
- Type 2: improved linear dynamical range

SPE peak at 1500V. No SPE for 1 PMT

PMT summary

XII 🐙 🧐 - 😢 - Iマ CR284结果.xlsx - Microsoft Excel(产品激活失败)													
文作	+ 开始	插入	页面布局	公式 数据 1	审阅 视图		_	_	_	_		∞ ? - 6	×
	N14	- (0	f _x										~
	A	В	С	D	E	F	G	Н	I	J	K	L	
1	编号	SK	SP	Gain(*10^6)	p/v	resolution	Beta(1000~1500)	HV(4*10^6)	p/v	resolution	HV (2E6)	HV(1E6)	
2	A67701	92	104	4.63	1.67	0.509	7.06	1469.2	1.73	0.498	1331.9	1207.3	
3	A67761			14.55	i 3.06	0.435	7.8	1271.1	1.47	0.489	1163.1	1064.2	_
4	A67668	94	138	6.57	3.11	0.443	7.45	1403.3	2.42	0.468	1287.7	1165.1	
5	A67749	87	207	10.76	3.1	0.434	7.78	1320.9	2.16	0.496	1208.3	1105.3	
6	A67689	102	163	5.88	2.59	0.477	7.2	1421.9	1.69	0.495	1291.4	1172.8	
7	A67752	101	308	12.52	2.54	0.487	7.34	1287.9	1.28	0.543	1171.8	1066.2	
8	A67748	89	120	4. 04	2.24	0.498	7.14	1497.9	1.71	0.49	1359.3	1233.6	
9	A67702	103	123	2.58	1.13	0.608	6.72	1601.1	2.1	0.55	1444.2	1302.7	
10	A67746	96	176	5.63	1.74	0.538	7.21	1430.6	1.71	0.552	1299.4	1180.3	
11	A67693	97	196										-
₩.4	N Sheet	t1 / Sheet2	/Sheet3/	2			I 4					Þ	• I
就绪											0% 🗩	$-\nabla$ (Ð ,;

Scintillator measurement

Reflection inside: print paper Package: black tape One side open

Scintillator measurement

Scintillator puts in two pieces foam plastic, help to couple the scintillator to PMT

2016/1/21

Scintillator measurement

PMT couples to scintillator

Scintillator measure

Triggered with two pre-shower scintillator

Threshold: 5mV

One signal of scintillator

Yellow: another pre-shower

Blue: Shashlyk scintillator gain=2E6

Single muon spectrum

Statistics is accumulating

Peak: 3.987pC

No. of electophoton: 12.5= 3.987*10^-12/(1.6*10^-19*2*10^6)

Next:

- 1) Uniformity of each piece
- 2) Uniformity of each batch
- 3) Affection of different reflection
- 4) Aging??

Thanks!