ECAL Energy Resolution

- PO: statistic-related fluctuations: intrinsic shower fluctuations, photoelectron statistics, and sampling fluctuations (4-5% for our shashlik design, which is based on Xiaochao's calculation)
- P1: detector non-uniformity and calibration uncertainty

◆P2: noise term

Method

 $e^{\scriptscriptstyle +}:$ E= 0.05 , 0.1 , 0.15, 0.2...., and 7 GeV

Total shower deposit energy: totEdep

7-module Configuration Simulation Results

EC energy resolution

7-module Configuration Simulation Results EC energy resolution

PVDIS Configuration and θ_e =25° Simulation Results EC energy resolution

Summary

 For the 7-module configuration, positrons without any field straightly hit on the front of

ECAL.	χ^2 / ndf	333.8 / 14
	Prob	0
	p0	0.03994 ± 5.584e-05
	p1	0 ± 0.0002934
	p2	0.007974 ± 4.864e-05

• For the PVDIS configuration, electrons with field with θ =250 hit on the front of ECAL.

χ^2 / nc	df 129.7 / 6
Prob	1.492e-25
p0	0.05131 ± 0.007546
p1	0 ± 16.88
p2	0.04792 ± 0.0007579

Momentum Fraction Deposit in ECAL

100 MeV/c, e+

Next Step

• Figure out the over summed ECLA deposit energy in the GEMC simulation package.

- Check out the ECAL deposit energy in each scintillator layer.
- Figure out how does the GEMC add deposit energy together.

Any comments and suggestions ?