<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<font face="Helvetica, Arial, sans-serif">ODU Colloquium<br>
Tues., March 7, 2017<br>
2:00 p.m. in OCNPS200<br>
</font>
<div class=""> <font face="Helvetica, Arial, sans-serif"><br>
Dr. Zohreh Davoudi<br>
MIT</font></div>
<font face="Helvetica, Arial, sans-serif"> </font>
<div style="font-size: 13.3333px;" class="">
<div style="font-size: 13px;" class="">
<div style="color: rgb(34, 34, 34); font-size: 12.8px;
background-color: rgb(255, 255, 255);" class="">
<div style="color: rgb(0, 0, 0); font-size: 13.3333px;"
class=""><font face="Helvetica, Arial, sans-serif"><span
style="color: rgb(34, 34, 34); font-size: small;"
class=""><br>
<br>
</span></font></div>
</div>
</div>
</div>
<font face="Helvetica, Arial, sans-serif"> </font>
<div style="font-size: 13.3333px;" class="">
<div style="font-size: 13px;" class="">
<div style="color: rgb(34, 34, 34); font-size: 12.8px;
background-color: rgb(255, 255, 255);" class="">
<div style="color: rgb(0, 0, 0); font-size: 13.3333px;"
class=""><font face="Helvetica, Arial, sans-serif" size="+3"><b><span
style="color: rgb(34, 34, 34); font-size: small;"
class=""><font class="">The Road to Nuclear Physics
from Standard Model<br>
<br>
</font></span></b></font></div>
</div>
</div>
</div>
<font face="Helvetica, Arial, sans-serif"></font>
<div style="color: rgb(0, 0, 0); font-size: 13.3333px;" class=""><font
face="Tahoma" size="+3"><span style="color: rgb(34, 34, 34);
font-size: small;" class=""><font class="">At the core of
nuclear physics is to understand complex phenomena occurring
in the hottest<br>
and densest known environments in nature, and to unravel the
mystery of the dark sector and<br>
other new physics possibilities. Nuclear physicists are
expected to predict, with certainty, the <br>
reaction rates relevant to star evolutions and nuclear
energy research, and to obtain the “standard” <br>
effects in nuclei to reveal information about the
“non-standard” sector. To achieve such certainty, <br>
the field has gradually started to eliminate its reliance on
the phenomenological models and has <br>
entered an era where the underlying interactions are
"effectively" based on the Standard Model of<br>
particle physics, in particular Quantum Chromodynamics
(QCD). The few-nucleon systems can <br>
now emerge directly from the quark and gluon degrees of
freedom and with only QCD interactions <br>
in play, using the numerical method of lattice QCD. Few-body
observable, such as few-hadron <br>
interactions and scattering amplitudes, as well transition
amplitudes and reaction rates, have been<br>
the focus of this vastly growing field. Once obtained from
QCD, and matched to effective field theories, <br>
these can advance and improve the nuclear many-body
calculations of exceedingly more complex <br>
systems. This talk is a brief introduction to this program
and its goals, with a great focus on an example <br>
with phenomenological importance to demonstrate the road map
described above.</font></span></font></div>
<font face="Helvetica, Arial, sans-serif"> </font>
<div style="color: rgb(0, 0, 0); font-size: 13.3333px;" class=""><font
face="Helvetica, Arial, sans-serif"><span style="color: rgb(34,
34, 34); font-size: small;" class=""><font class=""><br
class="">
</font></span></font></div>
<font face="Helvetica, Arial, sans-serif"> </font>
<div class=""><font class="" face="Courier New" color="#222222"
size="2"><br class="">
</font></div>
</body>
</html>