<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=Windows-1252">
<style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
</head>
<body dir="ltr">
<div id="divtagdefaultwrapper" style="font-size:12pt;color:#000000;font-family:Calibri,Helvetica,sans-serif;" dir="ltr">
<p style="margin-top:0;margin-bottom:0"><br>
</p>
<br>
<br>
<div style="color: rgb(0, 0, 0);">
<hr style="display:inline-block;width:98%" tabindex="-1">
<div id="divRplyFwdMsg" dir="ltr"><font style="font-size:11pt" face="Calibri, sans-serif" color="#000000"><b>From:</b> Wilkinson, Ellie V <evwilk@wm.edu><br>
<b>Sent:</b> Monday, February 18, 2019 4:50 PM<br>
<b>To:</b> physics2017@physics.wm.edu<br>
<b>Cc:</b> undergrads2017@physics.wm.edu<br>
<b>Subject:</b> Physics Colloquia Schedule for 2/18 to 2/22</font>
<div> </div>
</div>
<div link="#0563C1" vlink="#954F72" lang="EN-US">
<div class="x_WordSection1">
<p><b><span style="color:blue">Physics Colloquium</span></b></p>
<p><span style="color:blue">Wednesday, February 20, 2019</span><span style="color:blue"></span></p>
<div>
<div>
<div>
<p class="x_xxmsonormal">4:00 PM </p>
<p class="x_xxmsonormal">Small Hall, Room 111</p>
<p class="x_xxmsonormal"> </p>
<p class="x_xxmsonormal"><b>Jeremy Green </b>[Host J. Dudek]</p>
<p class="x_xxmsonormal" style="margin-bottom:14.0pt">Deutsches Eletronen-Synchrotron, Germany<br>
<br>
Title of Talk: <b><span style="font-size:14.0pt">“</span><em>Calculating the quark substructure of the proton and neutron</em></b><em><b><span style="font-size:14.0pt">”</span></b></em></p>
<p class="x_xxmsonormal"><b>Abstract</b>: <br>
Protons and neutrons (together called nucleons) are the basic building blocks of ordinary matter, along with electrons. Unlike electrons, they are not fundamental particles in the Standard Model of particle physics — they are bound states of quarks and gluons
interacting as described by the theory of quantum chromodynamics (QCD). Because QCD is strongly coupled at low energies, it is difficult to determine the structure of nucleons from first principles. This can be done using lattice QCD: a formulation of QCD
suitable for performing calculations on supercomputers, which provides a way to calculate nucleon structure with controllable uncertainties.</p>
<p class="x_xxmsonormal"> </p>
<p class="x_xxmsonormal">In this talk I will discuss some basic properties of nucleons such as the proton radius (which is the subject of a large disagreement between different experiments), and how they can be computed using lattice QCD. I will give an overview
of the current status of these calculations, and present some progress in understanding the role that strange quarks play in nucleons.</p>
<div class="x_MsoNormal" style="text-align:center" align="center">
<hr width="100%" size="2" align="center">
</div>
<p class="x_xxmsonormal"><b><span style="color:blue">Physics Colloquium</span></b><b><span style="font-size:11.0pt; font-family:"Calibri",sans-serif; color:blue"></span></b></p>
<p class="x_xxmsonormal"><span style="color:blue">Friday, February 22, 2019</span><span style="color:blue"></span></p>
<p class="x_xxmsonormal">4:00 PM </p>
<p class="x_xxmsonormal">Small Hall, Room 111</p>
<p class="x_xxmsonormal"> </p>
<p class="x_xxmsonormal"><b>Jacobo Ruiz de Elvira </b>[Host: K. Orginos]</p>
<p class="x_xxmsonormal" style="margin-bottom:14.0pt">University of Bern, Switzerland<br>
<br>
Title of Talk: <b>“<i>Strong interactions and the precision frontier of Hadron Physics</i>”</b><br>
<br>
<b>Abstract</b>:<br>
Although QCD is well established as the theory of strong interactions, the hadron spectrum is still not understood from first principles. Nevertheless, the understanding of strong interactions with high precision has become in recent years a prerequisite for
progress in nuclear and particle physics in many different areas. Dispersion relations are a consequence of causality, which mathematically translates into analyticity conditions on scattering amplitudes.<br>
<br>
In this talk, I will show how the fruitful combination of dispersion-theoretical methods with modern high-precision experimental data allows one to determine low-energy hadron observables with unprecedented accuracy. I will highlight this area of current research
with two examples: pion-pion(kaon) scattering and the role of the lightest scalars mesons; 2. the mass of the nucleon and its connection to pion-nucleon scattering.</p>
<p class="x_xxmsonormal" style="margin-bottom:14.0pt"><b><i>Cookies & Coffee will be served in Small 122 at 3:30pm</i></b></p>
<p class="x_MsoNormal">Cheers,</p>
<p class="x_MsoNormal"> </p>
<p class="x_MsoNormal">Ellie Wilkinson</p>
<p class="x_MsoNormal">William & Mary</p>
<p class="x_MsoNormal">Physics Admin</p>
<p class="x_MsoNormal"><a href="mailto:evwilk@wm.edu" id="LPlnk388939" class="OWAAutoLink" previewremoved="true"><span style="color:windowtext">evwilk@wm.edu</span></a></p>
<p class="x_MsoNormal">757-221-3503<span style="font-size:11.0pt; font-family:"Calibri",sans-serif"></span></p>
</div>
<p class="x_MsoNormal"><span style="font-size:11.0pt; font-family:"Calibri",sans-serif"> </span></p>
<p class="x_xxmsonormal" style="margin-bottom:14.0pt"><span style="font-size:11.0pt; font-family:"Calibri",sans-serif"> </span></p>
<p class="x_xxmsonormal"> </p>
<p class="x_xxmsonormal"> </p>
</div>
</div>
</div>
</div>
</div>
</div>
</body>
</html>