<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=Windows-1252">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<br>
</div>
<div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<br>
</div>
<div id="appendonsend"></div>
<hr tabindex="-1" style="display:inline-block; width:98%">
<div id="divRplyFwdMsg" dir="ltr"><font style="font-size:11pt" face="Calibri, sans-serif" color="#000000"><b>From:</b> Wilkinson, Ellie V <evwilk@wm.edu><br>
<b>Sent:</b> Monday, August 24, 2020 4:27 PM<br>
<b>To:</b> physics2017@physics.wm.edu <physics2017@physics.wm.edu><br>
<b>Cc:</b> undergrads2017@physics.wm.edu <undergrads2017@physics.wm.edu><br>
<b>Subject:</b> [EXTERNAL] Physics Colloquium for Friday, September 4, "Towards the solution of the many-electron problem: properties of the hydrogen chain" - Prof. Shiwei Zhang</font>
<div> </div>
</div>
<div lang="EN-US">
<div class="x_WordSection1">
<p class="x_MsoNormal" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: "Calibri", sans-serif;">
<b><u><span style="font-size:13.0pt; font-family:"Times New Roman",serif">Physics Colloquium</span></u></b><span style="font-size:13.0pt; font-family:"Times New Roman",serif">
<b>Shiwei Zhang</b> [Host: H. Krakauer]<br>
Friday, September 4, 2020 William & Mary and Flatiron Institute<br>
4:00 PM <i><u>“Towards the solution of the many-electron problem: properties of the hydrogen chain”<br>
</u></i><br>
<b><span style="color:#0070C0">Zoom Link: https://cwm.zoom.us/j/97377816824
<br>
</span><br>
Abstract:</b><br>
Materials in which electrons strongly interact with one another exhibit a fascinating variety of structural, electronic and magnetic properties. Capturing the many underlying effects responsible for these properties is essential for understanding and predicting
material behavior but requires a reliable treatment of the many-electron Schrodinger equation, which is a grand challenge in modern physics and chemistry. I will discuss an in-depth study of the quantum-mechanical ground state of what is perhaps the simplest
realistic model for a bulk material: an infinite chain of equally spaced hydrogen atoms. The combined use of cutting-edge computational methods reveals a rich phase landscape that sheds light on the variety of material properties. This work establishes the
hydrogen chain as a key benchmark for further methodological developments and an important model system for correlated electron systems. The results will motivate experimental realizations and stimulate further efforts to characterize phase diagrams of low-dimensional
materials.<br>
<br>
</span><b><span style="font-size:12.0pt; font-family:"Times New Roman",serif"> </span></b></p>
<p class="x_MsoNormal" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: "Calibri", sans-serif;">
<span style="font-size:12.0pt; font-family:"Times New Roman",serif">Cheers,</span></p>
<p class="x_MsoNormal" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: "Calibri", sans-serif;">
<span style="font-size:12.0pt; font-family:"Times New Roman",serif">Ellie Wilkinson</span></p>
<p class="x_MsoNormal" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: "Calibri", sans-serif;margin-bottom:12.0pt">
<span style="font-size:12.0pt; font-family:"Times New Roman",serif">William & Mary Physics<br>
Administrative Coordinator</span></p>
<p class="x_MsoNormal" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: "Calibri", sans-serif;">
</p>
</div>
</div>
</div>
</body>
</html>