<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=Windows-1252">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof">
Dear All,<br>
<br>
On Wednesday, November 1<span><sup>st</sup> , at 1:00 PM EDT, we will have a Cake Seminar given by Jack Araz of
</span>ODU and Jlab in the room F224/225. Please, see below for title and abstract.<br>
<br>
<span style="margin: 0px; background-color: white;"><span style="font-size: 11pt; font-family: Calibri, sans-serif; margin: 0px; color: rgb(36, 36, 36);">
<div style="font-size: 15px; font-family: Calibri, Arial, Helvetica, sans-serif; margin: 0px; color: black; background-color: white;">
<span style="font-size:11pt;margin:0px"><span style="font-family: Calibri, sans-serif; margin: 0px; background-color: white;"><b><u><span style="font-size:12pt;margin:0px"><span data-markjs="true" class="x_ContentPasted0" style="font-size:11pt;margin:0px"><span data-markjs="true" class="markwfjcj015h" data-ogac="" data-ogab="" data-ogsc="" data-ogsb="">Cake</span></span></span><span style="margin:0px"><span class="x_ContentPasted0" style="margin:0px"> </span></span><span style="font-size:12pt;margin:0px"><span data-markjs="true" class="x_ContentPasted0" style="font-size:11pt;margin:0px"><span data-markjs="true" class="mark5ixy0umrn" data-ogac="" data-ogab="" data-ogsc="" data-ogsb="">Seminar</span></span></span></u></b><span class="x_ContentPasted0" style="margin:0px"><span class="x_ContentPasted0">:</span><b> </b></span><span class="x_ContentPasted0" style="margin:0px">Wednesday,
</span><span class="x_ContentPasted0" style="margin:0px"><span style="margin:0px"><span style="margin: 0px; color: rgb(36, 36, 36); background-color: white;">November</span><span> 1</span></span><span><sup>st</sup> </span><span style="margin:0px">, 1pm EDT </span></span></span></span></div>
</span></span><span style="margin: 0px; background-color: white;"><span style="font-size: 11pt; font-family: Calibri, sans-serif; margin: 0px; color: rgb(36, 36, 36);">
<div style="font-size: 12pt; font-family: Calibri, Arial, Helvetica, sans-serif; margin: 0px; color: black; background-color: white;">
<p style="font-size: 10pt; font-family: Calibri, sans-serif; margin: 0px; color: rgb(36, 36, 36); background-color: white;">
<b><u><span style="font-size:11pt;margin:0px"><br class="x_ContentPasted0">
</span></u></b></p>
<p style="font-size: 10pt; font-family: Calibri, sans-serif; margin: 0px; color: rgb(36, 36, 36); background-color: white;">
<b><u><span class="x_ContentPasted0" style="font-size:11pt;margin:0px">Speaker</span></u></b><span class="x_ContentPasted0 ContentPasted1" style="font-size:11pt;margin:0px">: Jack Araz (ODU/Jlab)<span class="x_ContentPasted0" style="margin:0px"></span></span></p>
</div>
</span></span><br>
<div class="ContentPasted0"><b><u>Title:</u></b> Theory-driven Quantum Machine Learning for HEP<br class="ContentPasted0">
<br class="ContentPasted0">
<b><u>Abstract:</u></b> Machine Learning is, in most cases, powerful but a black-box application. In this talk, we will tackle this very problem from a quantum mechanics point of view, arguing that an optimisation problem, such as classification or anomaly
detection, can be studied by “rephrasing" the problem as a quantum many-body system or a mixed state. Such an approach allows us to employ the entire arsenal of quantum theory for data analysis techniques. Hence, this talk will present a small step towards
fully theory-driven and interpretable quantum machine learning applications.<br>
<br>
Best regards,<br>
Caroline, Joe & Zheng-Yan<br>
</div>
<div><br class="ContentPasted0">
</div>
<br>
</div>
</body>
</html>