<!DOCTYPE html><html><head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
  </head>
  <body>
    <p>Hey everyone,</p>
    <p>We will be having an <b>in-person</b> Cake Seminar<b> today at
        1pm</b><b>. </b>Please join us<b> in L102</b>. Below is the
      info</p>
    <p>Speaker: Kiminad Mamo (UConn/JLab)</p>
    <div style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; color: rgb(0, 0, 0);" class="elementToProof"><span style="font-size: 14pt;">Title:
        Subsystem QCD: Reduced Density Matrices and Entanglement Entropy
        in Hadron States</span></div>
    <div style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof"> <br>
    </div>
    <div style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; color: rgb(0, 0, 0);" class="elementToProof"> <span style="font-size: 14pt;">Abstract: </span></div>
    <div style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; color: rgb(0, 0, 0);" class="elementToProof"> <span style="font-size: 14pt;">I present
        a subsystem formulation of QCD in which a spatial region defines
        a reduced density matrix, such that statements about "what is
        inside'' are posed strictly in terms of that reduced state. I
        also provide a <i>Euclidean</i> path-integral representation
        thereof. I then apply this subsystem viewpoint to entanglement.
        For a spherical region of radius R, the modular Hamiltonian has
        a thermal interpretation with an effective entanglement
        temperature T_ent=1/(2pi R). In this language, 3D Breit-frame
        EMT profiles -- often used to infer pressure and shear from
        gravitational form factors --enter as mechanical response
        coefficients, while the entanglement itself remains
        intrinsically dependent on R. This clarifies how EMT "pressure''
        extracted from Breit-frame profiles should be interpreted,
        without promoting Breit images to probability densities. I close
        with remarks on how this subsystem/entanglement viewpoint can be
        used as a confinement diagnostic.</span></div>
    <p>Best wishes,<br>
    </p>
    <p>Adam, Joe, and Pia</p>
    <p><br>
    </p>
    <pre class="moz-signature" cols="72">-- 
Pia Leonie Jones Petrak
Postdoctoral Fellow
Theoretical and Computational Physics Center
Jefferson Lab</pre>
  </body>
</html>